indri-0.1-124m-tts / tts_pipeline.py
cmeraki's picture
Updated pipeline
834b4ea
raw
history blame contribute delete
5.84 kB
import re
import torch
import numpy as np
from transformers import MimiModel, GenerationConfig
from transformers import Pipeline, LogitsProcessor
class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
def __init__(self, input_start_len: int, codebook_size: int, num_codebooks: int, offset: int, stop_token: int):
self.input_start_len = input_start_len
self.codebook_size = codebook_size
self.num_codebooks = num_codebooks
self.offset = offset
self.stop_token = stop_token
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
curr_len = input_ids.shape[-1]
codebook_idx = ((curr_len - self.input_start_len) % self.num_codebooks)
scores_processed = scores.clone()
scores_processed[:, : self.offset + codebook_idx * self.codebook_size] = -float("inf")
scores_processed[:, self.offset + (codebook_idx+1) * self.codebook_size :] = -float("inf")
scores_processed[:, self.stop_token] = scores[:, self.stop_token]
return scores_processed
class IndriTTSPipeline(Pipeline):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.audio_tokenizer = MimiModel.from_pretrained('kyutai/mimi').to(device=self.device)
# TODO: Ideally all of this should come from model config
self.convert_token = self.tokenizer.encode('[convert]')
self.stop_token = self.tokenizer.encode('[stop]')
self.text_modality_token = self.tokenizer.encode('[text]')
self.acoustic_modality_token = self.tokenizer.encode('[mimi]')
self.num_codebooks = 8
self.audio_offset = 50257
self.model.stop_token = self.stop_token
self.model.generation_config = GenerationConfig(
eos_token_id=self.stop_token,
max_length=kwargs.get('max_length', 1024),
temperature=kwargs.get('temperature', 0.5),
top_k=kwargs.get('top_k', 15),
do_sample=kwargs.get('do_sample', True)
)
def _sanitize_parameters(self, **kwargs):
speaker = kwargs.get('speaker', '[spkr_unk]')
preprocess_kwargs = {
'speaker': speaker
}
return preprocess_kwargs, {}, {}
def _prepare_tts_tokens(self, text_tokens, speaker):
input_tokens = np.hstack([
self.text_modality_token,
text_tokens,
self.convert_token,
self.acoustic_modality_token,
self.tokenizer.encode(speaker)
])
return input_tokens.tolist()
def _sanitize_text(self, text):
text = text.lower()
text = re.sub(r'\n+', ' ', text)
text = re.sub(r'[ \t]+', ' ', text)
text = re.sub(r'([,\.?])+', r'\1', text)
return text.strip()
def _deserialize_tokens(self, tokens, num_codebooks):
cb = [tokens[i::num_codebooks] for i in range(num_codebooks)]
min_shape = min([c.shape for c in cb])[0]
acoustic_tokens = torch.vstack([c[:min_shape] - 2048*i for i, c in enumerate(cb)])
return acoustic_tokens
# TODO: Use this to support batching
def _prepare_mimi_batch(self, tokens, attention_mask):
max_len = max(token.size(1) for token in tokens)
padded_tokens = []
padded_masks = []
for token, mask in zip(tokens, attention_masks):
pad_len = max_len - token.size(1)
padded_token = F.pad(token, (0, pad_len, 0, 0), value=0)
padded_mask = F.pad(mask, (0, pad_len, 0, 0), value=0)
padded_tokens.append(padded_token)
padded_masks.append(padded_mask)
stacked_tokens = torch.stack(padded_tokens, dim=0)
stacked_masks = torch.stack(padded_masks, dim=0)
return stacked_tokens, stacked_masks
def preprocess(self, inputs, speaker):
input_text = self._sanitize_text(inputs)
input_tokens = self.tokenizer.encode(input_text)
task_tokens = self._prepare_tts_tokens(input_tokens, speaker)
task_tokens = torch.tensor(task_tokens).unsqueeze(0)
return {'input_ids': task_tokens, 'attention_mask': torch.ones_like(task_tokens)}
def _forward(self, model_inputs, **forward_args):
logits_processor=[
AlternatingCodebooksLogitsProcessor(
input_start_len=model_inputs['input_ids'].shape[-1],
codebook_size=2048,
num_codebooks=self.num_codebooks,
offset=self.audio_offset,
stop_token=self.stop_token
)
]
outputs = self.model.generate(
model_inputs['input_ids'],
logits_processor=logits_processor
)
audio_tokens, attention_mask = [], []
for idx, inputs in enumerate(model_inputs['input_ids']):
truncated = outputs[idx, inputs.shape[-1]:]
end = torch.where(truncated == self.stop_token[0])[-1]
if end.shape[-1] > 0:
end = end[0]
else:
end = truncated.shape[-1]
truncated = truncated[:end]
truncated -= self.audio_offset
truncated = self._deserialize_tokens(torch.tensor(truncated), self.num_codebooks)
audio_tokens.append(truncated)
attention_mask.append(torch.ones_like(truncated))
audio_tokens = torch.vstack(audio_tokens).unsqueeze(0)
attention_mask = torch.vstack(attention_mask).unsqueeze(0)
audio = self.audio_tokenizer.decode(audio_tokens).audio_values
return {
'audio_tokens': audio_tokens, # (B, num_codebooks, num_samples)
'audio': audio # (B, 1, num_audio_samples)
}
def postprocess(self, model_outputs):
return model_outputs