Upload inference_chatrag.py
Browse files- inference_chatrag.py +39 -0
inference_chatrag.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from transformers import AutoModelForSequenceClassification
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("deberta-classification-chatrag/checkpoint-6342")
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("deberta-classification-chatrag/checkpoint-6342")
|
10 |
+
|
11 |
+
|
12 |
+
result = ["Comment puis-je renouveler un passeport ?", "Combien font deux et deux ?", "Écris un début de lettre de recommandation pour la Dinum"]
|
13 |
+
|
14 |
+
result = pd.DataFrame(result, columns=['query'])
|
15 |
+
|
16 |
+
complete_probabilities = []
|
17 |
+
|
18 |
+
for text in result["query"].tolist():
|
19 |
+
encoding = tokenizer(text, return_tensors="pt")
|
20 |
+
encoding = {k: v.to(model.device) for k,v in encoding.items()}
|
21 |
+
|
22 |
+
outputs = model(**encoding)
|
23 |
+
|
24 |
+
logits = outputs.logits
|
25 |
+
logits.shape
|
26 |
+
|
27 |
+
# apply sigmoid + threshold
|
28 |
+
sigmoid = torch.nn.Sigmoid()
|
29 |
+
probs = sigmoid(logits.squeeze().cpu())
|
30 |
+
predictions = np.zeros(probs.shape)
|
31 |
+
|
32 |
+
# Extract the float value from the tensor
|
33 |
+
float_value = probs.item()
|
34 |
+
|
35 |
+
complete_probabilities.append(float_value)
|
36 |
+
|
37 |
+
result["prob"] = complete_probabilities
|
38 |
+
|
39 |
+
print(result)
|