File size: 37,734 Bytes
f563cb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
import itertools
from collections.abc import Sequence
from importlib.metadata import PackageNotFoundError, version
from typing import Callable
import torch
import torch.nn as nn
from einops import rearrange
from flash_attn.flash_attn_interface import flash_attn_varlen_func
from transformers import PreTrainedModel
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.llama.modeling_llama import (
LlamaDecoderLayer,
LlamaRotaryEmbedding,
)
from transformers.utils import ModelOutput
from .config import (
CrossAttentionConfig,
DecoderHATModelConfig,
EncoderHATModelConfig,
HATArchitectureConfig,
TransformerHATModelConfig,
)
from .splitter import HATSplitter
try:
transformers_version = version("transformers")
if transformers_version != "4.46.3":
print(f"Warning: Expecected transformers version 4.46.3, but found {transformers_version}. Outputs might be different.")
except PackageNotFoundError:
print("transformers is not installed")
def sample_argmax(logits: torch.Tensor) -> torch.Tensor:
return torch.argmax(logits, dim=-1)[:, -1]
LLAMA_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant. You give engaging, well-structured answers to user inquiries.<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
class HATCache(Cache):
encoder_cache: DynamicCache
backbone_cache: DynamicCache
decoder_cache: DynamicCache
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.encoder_cache = DynamicCache()
self.backbone_cache = DynamicCache()
self.decoder_cache = DynamicCache()
def get_backbone_cache(self) -> DynamicCache:
return self.backbone_cache
def get_decoder_cache(self) -> DynamicCache:
return self.decoder_cache
def get_encoder_cache(self) -> DynamicCache:
return self.encoder_cache
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, q_cos=None, q_sin=None, k_cos=None, k_sin=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
and allows for different sequence lengths.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
q_cos (`torch.Tensor`): The cosine part of the rotary embedding.
q_sin (`torch.Tensor`): The sine part of the rotary embedding.
k_cos (`torch.Tensor`): The cosine part of the rotary embedding.
k_sin (`torch.Tensor`): The sine part of the rotary embedding.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze
cos[position_ids] and sin[position_ids] so that they can be properly
broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape
[batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting
unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids]
broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key
tensors rotated using the Rotary Position Embedding.
"""
q_cos = q_cos.unsqueeze(unsqueeze_dim)
q_sin = q_sin.unsqueeze(unsqueeze_dim)
k_cos = k_cos.unsqueeze(unsqueeze_dim)
k_sin = k_sin.unsqueeze(unsqueeze_dim)
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
class HATBackbone(nn.Module):
def __init__(self, config: TransformerHATModelConfig, *args, **kwargs):
super().__init__(*args, **kwargs)
self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.rotary_emb = LlamaRotaryEmbedding(config=config)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor | None = None,
past_key_values: DynamicCache | None = None,
use_cache: bool | None = False,
) -> BaseModelOutputWithPast:
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if position_ids is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
position_ids = torch.arange(
past_seen_tokens,
past_seen_tokens + hidden_states.shape[1],
device=hidden_states.device,
).unsqueeze(0)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for backbone_layer in self.layers:
layer_outputs = backbone_layer(
hidden_states,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
return CausalLMOutputWithPast(
hidden_states=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
class HATDecoderConnector(nn.Module):
def __init__(self, backbone_hiden_dim: int, *args, **kwargs):
super().__init__(*args, **kwargs)
self.first_word_embedding = torch.nn.Parameter(
torch.empty(
1,
1,
backbone_hiden_dim,
device="cuda",
dtype=torch.bfloat16,
)
)
def forward(
self,
backbone_activations: torch.Tensor,
):
activations = backbone_activations.clone()
activations[:, -1:, :] = self.first_word_embedding
activations = torch.roll(activations, shifts=1, dims=1)
return activations
class RMSNorm(nn.Module):
def __init__(self, dimensions: int, eps: float, device: torch.device, dtype: torch.dtype = torch.bfloat16, norm_in_fp32: bool = False):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(dimensions, dtype=dtype).to(device))
self.norm_in_fp32 = norm_in_fp32
def forward(self, x: torch.Tensor) -> torch.Tensor:
original_dtype = x.dtype
if self.norm_in_fp32:
x = x.float()
out = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
if out.dtype != original_dtype:
out = out.to(original_dtype)
return out * self.weight
class HATDecoderBlock(nn.Module):
def __init__(
self,
add_cross_attention: bool,
config: DecoderHATModelConfig,
layer_idx: int,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.add_cross_attention = add_cross_attention
self.config = config
self.llama_layer = LlamaDecoderLayer(config, layer_idx)
self.llama_layer.self_attn.sliding_window = config.sliding_window
if add_cross_attention:
self.cross_attention = HATCrossAttention(
hidden_size=config.cross_attention_config.hidden_size,
hidden_size_kv=config.cross_attention_config.hidden_size_kv,
hidden_size_q=config.cross_attention_config.hidden_size_q,
config=config,
cross_attention_config=config.cross_attention_config,
)
self.query_norm = RMSNorm(
config.cross_attention_config.hidden_size_q,
eps=config.rms_norm_eps,
device=torch.device("cuda"),
dtype=torch.bfloat16,
norm_in_fp32=False,
)
self.kv_norm = RMSNorm(
config.cross_attention_config.hidden_size_kv,
eps=config.rms_norm_eps,
device=torch.device("cuda"),
dtype=torch.bfloat16,
norm_in_fp32=False,
)
def apply_norm(self, activations):
return self.query_norm(activations), self.kv_norm(activations)
def forward(
self,
encoder_activations,
backbone_activations,
byte_position_ids,
word_position_ids,
cumulative_seq_lengths_per_word,
position_embeddings,
past_key_values,
use_cache,
):
if self.add_cross_attention:
kv_activations = self.kv_norm(backbone_activations)
q_activations = self.query_norm(encoder_activations)
activations = self.cross_attention.forward(
q_activations=q_activations,
kv_activations=kv_activations,
position_ids_q=byte_position_ids,
position_ids_kv=word_position_ids,
cumulative_seq_q=cumulative_seq_lengths_per_word,
cumulative_seq_kv=torch.arange(0, kv_activations.size(1) + 1, device=encoder_activations.device, dtype=torch.int32),
causal=False,
)
encoder_activations = encoder_activations + activations
return self.llama_layer.forward(
hidden_states=encoder_activations,
position_ids=byte_position_ids,
position_embeddings=position_embeddings,
past_key_value=past_key_values,
use_cache=use_cache,
)[0]
class HATDecoder(nn.Module):
def __init__(self, config: DecoderHATModelConfig, *args, **kwargs):
super().__init__()
self.decoder_layers = nn.Sequential()
for layer_idx in range(config.num_hidden_layers):
add_cross_attention = config.cross_attn_every_layer or layer_idx == 0
self.decoder_layers.add_module(
str(layer_idx),
HATDecoderBlock(
add_cross_attention,
config,
layer_idx,
),
)
self.rotary_emb = LlamaRotaryEmbedding(config=config)
def forward(
self,
backbone_activations: torch.Tensor,
activations: torch.Tensor,
cumulative_seq_lengths_per_word: torch.Tensor | None = None,
byte_position_ids: torch.Tensor | None = None,
word_position_ids: torch.Tensor | None = None,
past_key_values: DynamicCache | None = None,
use_cache: bool | None = False,
) -> BaseModelOutputWithPast:
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if byte_position_ids is None:
past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
byte_position_ids = torch.arange(
past_seen_bytes,
past_seen_bytes + activations.size(1),
device=activations.device,
dtype=torch.int32,
).unsqueeze(0)
if cumulative_seq_lengths_per_word is None:
cumulative_seq_lengths_per_word = torch.tensor([0, byte_position_ids.size(1)], dtype=byte_position_ids.dtype, device=byte_position_ids.device)
if word_position_ids is None:
raise ValueError() # TODO
position_embeddings = self.rotary_emb(activations, byte_position_ids)
for _, layer in enumerate(self.decoder_layers):
activations = layer(
encoder_activations=activations,
backbone_activations=backbone_activations,
position_embeddings=position_embeddings,
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
byte_position_ids=byte_position_ids,
word_position_ids=word_position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
)
return BaseModelOutputWithPast(
last_hidden_state=activations,
past_key_values=past_key_values if use_cache else None,
)
class HATCrossAttention(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_size_q: int,
hidden_size_kv: int,
config: EncoderHATModelConfig | DecoderHATModelConfig,
cross_attention_config: CrossAttentionConfig,
dtype: torch.dtype = torch.bfloat16,
):
super().__init__()
self.hidden_size = hidden_size
self.hidden_size_q = hidden_size_q
self.hidden_size_kv = hidden_size_kv
self.num_heads = cross_attention_config.num_attention_heads
self.num_key_value_heads = cross_attention_config.attention_num_kv_heads
self.num_repeat_kv = cross_attention_config.num_attention_heads // cross_attention_config.attention_num_kv_heads
self.head_dim = hidden_size // self.num_heads
self.q_proj = nn.Linear(
in_features=hidden_size_q,
out_features=hidden_size,
dtype=dtype,
bias=False,
)
self.k_proj = nn.Linear(
in_features=hidden_size_kv,
out_features=hidden_size // self.num_repeat_kv,
dtype=dtype,
bias=False,
)
self.v_proj = nn.Linear(
in_features=hidden_size_kv,
out_features=hidden_size // self.num_repeat_kv,
dtype=dtype,
bias=False,
)
self.o_proj = nn.Linear(in_features=hidden_size, out_features=hidden_size_q, dtype=dtype, bias=False)
rope_theta = config.rope_theta
rope_type = config.rope_scaling["rope_type"]
self.rotary_emb = LlamaRotaryEmbedding(dim=self.head_dim, base=rope_theta, rope_type=rope_type)
def forward(
self,
q_activations: torch.Tensor,
kv_activations: torch.Tensor,
position_ids_q: torch.Tensor,
position_ids_kv: torch.Tensor,
cumulative_seq_kv: torch.Tensor,
cumulative_seq_q: torch.Tensor,
causal: bool = True,
use_cache: bool = False,
past_key_value: DynamicCache | None = None,
):
q_len = cumulative_seq_q[-1]
bsz, _, _ = kv_activations.size()
query_states = self.q_proj(q_activations)
key_states = self.k_proj(kv_activations)
value_states = self.v_proj(kv_activations)
# TODO get rid of the double rearrange, this is just for compatibility with scaling
query_states = rearrange(query_states, "bsz seq_len (h d) -> bsz h seq_len d", h=self.num_heads)
key_states = rearrange(
key_states,
"bsz seq_len (h d) -> bsz h seq_len d",
h=self.num_key_value_heads,
)
value_states = rearrange(
value_states,
"bsz seq_len (h d) -> bsz h seq_len d",
h=self.num_key_value_heads,
)
# WIP: Should word_positions_id respect document boundaries?
q_cos, q_sin = self.rotary_emb(query_states, position_ids_q)
k_cos, k_sin = self.rotary_emb(key_states, position_ids_kv)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, q_cos=q_cos, q_sin=q_sin, k_cos=k_cos, k_sin=k_sin)
query_states = rearrange(query_states, "bsz h seq_len d -> (bsz seq_len) h d")
key_states = rearrange(key_states, "bsz h seq_len d -> (bsz seq_len) h d")
value_states = rearrange(value_states, "bsz h seq_len d -> (bsz seq_len) h d")
attn_output = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cumulative_seq_q,
cu_seqlens_k=cumulative_seq_kv,
max_seqlen_q=self._get_max_seqlen(cumulative_seq_q),
max_seqlen_k=self._get_max_seqlen(cumulative_seq_kv),
causal=False,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
def _get_max_seqlen(self, cumulative_word_lengths: torch.Tensor):
diffs = cumulative_word_lengths[1:] - cumulative_word_lengths[:-1]
return int(diffs.max().item())
class HATEncoderConnector(nn.Module):
def __init__(
self,
config: EncoderHATModelConfig,
backbone_hidden_size: int,
dtype: torch.dtype = torch.bfloat16,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.latent_query = torch.nn.Parameter(
torch.empty(
1,
1,
backbone_hidden_size,
device="cuda",
dtype=dtype,
)
)
self.cross_attention_encoder_connector = HATCrossAttention(
hidden_size=config.cross_attention_config.hidden_size,
hidden_size_q=backbone_hidden_size,
hidden_size_kv=config.hidden_size,
config=config,
cross_attention_config=config.cross_attention_config,
)
def forward(
self,
hidden_states: torch.Tensor,
cumulative_seq_lengths_per_word: torch.Tensor,
word_position_ids: torch.Tensor,
byte_position_ids: torch.Tensor,
):
q_len = cumulative_seq_lengths_per_word.shape[0] - 1
latent_query_repeated = self.latent_query.expand(-1, q_len, -1)
cumulative_seq_lengths_q = torch.arange(
start=0,
end=latent_query_repeated.shape[1] + 1,
step=1,
device=self.latent_query.device,
dtype=torch.int32,
)
word_embeddings = self.cross_attention_encoder_connector.forward(
q_activations=latent_query_repeated,
kv_activations=hidden_states,
position_ids_q=word_position_ids,
position_ids_kv=byte_position_ids,
cumulative_seq_q=cumulative_seq_lengths_q,
cumulative_seq_kv=cumulative_seq_lengths_per_word,
)
return word_embeddings
class HATEncoder(nn.Module):
def __init__(
self,
config: EncoderHATModelConfig,
dtype: torch.dtype = torch.bfloat16,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.embedding_layer = nn.Embedding(config.vocab_size, config.hidden_size, dtype=dtype)
self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
for layer in self.layers:
layer.self_attn.sliding_window = config.sliding_window
self.rotary_emb = LlamaRotaryEmbedding(config=config)
self.word_window_size = config.cross_attention_config.word_window_size
def forward(
self,
input_ids: torch.Tensor,
cumulative_seq_lengths_per_word: torch.Tensor | None = None,
byte_position_ids: torch.Tensor | None = None,
word_position_ids: torch.Tensor | None = None, # TODO: Remove
past_key_values: DynamicCache | None = None,
use_cache: bool | None = False,
):
input_embeds = self.embedding_layer(input_ids)
if cumulative_seq_lengths_per_word is None:
cumulative_seq_lengths_per_word = torch.tensor([0, input_embeds.shape[1]], dtype=torch.int32, device=input_ids.device)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if byte_position_ids is None:
past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
byte_position_ids = torch.arange(
past_seen_bytes,
past_seen_bytes + input_embeds.shape[1],
device=input_embeds.device,
).unsqueeze(0)
if word_position_ids is None:
raise ValueError() # TODO
hidden_states = input_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, byte_position_ids)
for layer in self.layers:
layer_outputs = layer(
hidden_states,
position_ids=byte_position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
return CausalLMOutputWithPast(
hidden_states=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
class HATForCausalLM(PreTrainedModel):
config_class = HATArchitectureConfig
_supports_flash_attn_2 = True
_supports_cache_class = True
def __init__(self, config: HATArchitectureConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.config = config
self.eos_token_id = config.eos_token_id
self.encoder = HATEncoder(config.encoder_config)
self.encoder_connector = HATEncoderConnector(config.encoder_config, config.backbone_config.hidden_size)
self.backbone = HATBackbone(config.backbone_config)
self.decoder_connector = HATDecoderConnector(config.backbone_config.hidden_size)
self.decoder = HATDecoder(config.decoder_config)
self.splitter = HATSplitter(special_token_dict=config.special_token_dict, max_word_size=config.max_word_size)
self.layer_norm = RMSNorm(config.decoder_config.hidden_size, eps=config.decoder_config.rms_norm_eps, device=torch.device("cuda"), dtype=torch.bfloat16, norm_in_fp32=False)
self.lm_head = nn.Linear(
in_features=config.decoder_config.hidden_size,
out_features=config.decoder_config.vocab_size,
dtype=torch.bfloat16,
bias=False,
)
def forward(
self,
input_ids: torch.Tensor,
byte_position_ids: torch.Tensor,
cumulative_seq_lengths_per_word: torch.Tensor | None = None,
word_position_ids: torch.Tensor | None = None,
past_key_values: HATCache | None = None,
use_cache: bool = False,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
if past_key_values is None and use_cache:
past_key_values = HATCache()
encoder_past_key_values = past_key_values.get_encoder_cache() if past_key_values is not None else None
backbone_past_key_values = past_key_values.get_backbone_cache() if past_key_values is not None else None
decoder_past_key_values = past_key_values.get_decoder_cache() if past_key_values is not None else None
encoder_output: BaseModelOutputWithPast = self.encoder(
input_ids=input_ids,
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
byte_position_ids=byte_position_ids,
word_position_ids=word_position_ids,
past_key_values=encoder_past_key_values,
use_cache=use_cache,
)
byte_level_activations = encoder_output.hidden_states
encoder_connector_output = self.encoder_connector(
byte_level_activations,
cumulative_seq_lengths_per_word,
word_position_ids,
byte_position_ids,
)
backbone_output: CausalLMOutputWithPast = self.backbone(
hidden_states=encoder_connector_output,
position_ids=word_position_ids,
past_key_values=backbone_past_key_values,
use_cache=use_cache,
)
predictive_word_embeddings = self.decoder_connector.forward(backbone_activations=backbone_output.hidden_states)
decoder_output = self.decoder.forward(
activations=byte_level_activations,
backbone_activations=predictive_word_embeddings,
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
byte_position_ids=byte_position_ids,
word_position_ids=word_position_ids,
past_key_values=decoder_past_key_values,
use_cache=use_cache,
)
decoder_output = self.layer_norm(decoder_output.last_hidden_state)
logits = self.lm_head(decoder_output)
loss = None
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=past_key_values if use_cache else None,
hidden_states=backbone_output.hidden_states,
attentions=None,
)
def _append_byte(self, words: list[list[int]], token: int) -> list[list[int]]:
extended_last_word = words.pop() + [token]
try:
text = self.splitter.decode(extended_last_word, skip_special_tokens=False)
list_of_bytes = self.splitter.encode(text)
words.extend([list(word_in_bytes) for word_in_bytes in list_of_bytes])
except UnicodeDecodeError:
# if decoding fails, the token cannot be part of a new word since it is not a valid
# utf-8 end byte and we append it to the current word
words.append(extended_last_word)
return words
def _complete_word(
self,
input_ids: torch.Tensor,
byte_position_ids: torch.Tensor,
backbone_word_prediction: torch.Tensor,
word_position_id: torch.Tensor,
encoder_cache: DynamicCache,
decoder_cache: DynamicCache,
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
):
"""Generate byte tokens until we hit the first byte of a new word."""
words = [input_ids.squeeze(0).tolist()]
byte_encoder_activations = []
completion_logits = []
while True:
encoder_output = self.encoder.forward(
input_ids,
byte_position_ids=None,
word_position_ids=word_position_id,
past_key_values=encoder_cache,
use_cache=True,
)
byte_encoder_activations.append(encoder_output.hidden_states)
decoder_output = self.decoder.forward(
backbone_word_prediction,
encoder_output.hidden_states,
byte_position_ids=None,
word_position_ids=word_position_id,
past_key_values=decoder_cache,
use_cache=True,
)
decoder_output = self.layer_norm(decoder_output.last_hidden_state)
logits = self.lm_head(decoder_output)
completion_logits.append(logits[0, -1:, :])
next_byte = int(sample_fn(logits).item())
words = self._append_byte(words, next_byte)
if len(words) > 1 or next_byte == self.eos_token_id:
break
input_ids = torch.tensor([[next_byte]], dtype=input_ids.dtype, device=input_ids.device)
byte_encoder_activations = torch.cat(byte_encoder_activations, dim=1)
num_kv = encoder_cache.get_seq_length()
byte_position_ids = torch.arange(num_kv + 1 - byte_encoder_activations.shape[1], num_kv + 1, device=input_ids.device, dtype=torch.long).unsqueeze(0)
completed_word_embedding = self.encoder_connector.forward(
byte_encoder_activations,
cumulative_seq_lengths_per_word=torch.tensor([0, byte_encoder_activations.size(1)], dtype=torch.int32, device=input_ids.device),
word_position_ids=word_position_id,
byte_position_ids=byte_position_ids,
)
completion = sum(words, [])[-len(completion_logits) :]
first_byte_of_next_word = words[1]
return completion, completed_word_embedding, first_byte_of_next_word, byte_position_ids[:, -1].item() + 1, completion_logits
def generate(
self,
input_ids: torch.Tensor,
max_new_tokens: int,
cumulative_seq_lengths_per_word: torch.Tensor,
byte_position_ids: torch.Tensor | None = None,
word_position_ids: torch.Tensor | None = None,
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
use_cache: bool = True,
stop_sequences: Sequence[str] | None = None,
):
if use_cache:
completion_text, completion_logits = self._generate_cached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)
else:
completion_text, completion_logits = self._generate_uncached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)
# remove stop sequence if exists
if stop_sequences is not None:
stop_sequences = sorted(stop_sequences, key=lambda i: len(i), reverse=True)
for stop_sequence in stop_sequences:
if stop_sequence in completion_text:
completion_text_left = completion_text.split(stop_sequence)[0]
completion_text_removed = completion_text[len(completion_text_left) :]
completion_logits = completion_logits[: -len(list(bytes(completion_text_removed.encode("UTF-8"))))]
completion_text = completion_text_left
break
return ModelOutput(
completion_text=completion_text,
input_ids=input_ids,
completion_logits=completion_logits,
)
@torch.no_grad()
def _generate_cached(
self,
input_ids: torch.Tensor,
max_new_tokens: int,
cumulative_seq_lengths_per_word: torch.Tensor,
byte_position_ids: torch.Tensor | None = None,
word_position_ids: torch.Tensor | None = None,
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
stop_sequences: Sequence[str] | None = None,
):
max_total_bytes = max_new_tokens + input_ids.shape[1]
if byte_position_ids is None:
byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
if word_position_ids is None:
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
last_word_start, last_word_end = (
cumulative_seq_lengths_per_word[-2],
cumulative_seq_lengths_per_word[-1],
)
# Populate cache with everything except last word
initial_forward_output = self.forward(
input_ids=input_ids[:, :last_word_start],
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word[:-1],
byte_position_ids=byte_position_ids[:, :last_word_start],
word_position_ids=word_position_ids[:, :-1],
past_key_values=None,
use_cache=True,
)
completion_bytes = []
completion_logits = []
input_ids = input_ids[:, last_word_start:last_word_end]
next_byte_id = last_word_end
byte_position_ids = byte_position_ids[:, last_word_start:last_word_end]
word_position_id = word_position_ids[:, -1].unsqueeze(-1)
backbone_last_hidden_state = initial_forward_output.hidden_states[:, -1:, :]
while next_byte_id < max_total_bytes:
completion, completed_word_embedding, first_byte_of_next_word, next_byte_id, next_completion_logits = self._complete_word(
input_ids=input_ids,
byte_position_ids=byte_position_ids,
backbone_word_prediction=backbone_last_hidden_state,
word_position_id=word_position_id,
encoder_cache=initial_forward_output.past_key_values.get_encoder_cache(),
decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
sample_fn=sample_fn,
)
completion_logits.extend(next_completion_logits)
completion_bytes.extend(completion)
if self.eos_token_id in completion_bytes:
completion_bytes = completion_bytes[: completion_bytes.index(self.eos_token_id)]
break
if stop_sequences is not None:
try:
completion_text_tmp = self.splitter.decode(completion_bytes)
if any(stop_sequence in completion_text_tmp for stop_sequence in stop_sequences):
break
except Exception as e:
print("Cannot compare stop sequence", e)
backbone_output = self.backbone.forward(
hidden_states=completed_word_embedding,
position_ids=None,
past_key_values=initial_forward_output.past_key_values.get_backbone_cache(),
use_cache=True,
)
backbone_last_hidden_state = backbone_output.hidden_states[:, -1, :].unsqueeze(1)
input_ids = torch.tensor([first_byte_of_next_word], dtype=input_ids.dtype, device=input_ids.device)
byte_position_ids = torch.tensor([[next_byte_id]], dtype=input_ids.dtype, device=input_ids.device)
word_position_id = word_position_id + 1
completion_bytes.extend(first_byte_of_next_word)
completion_bytes = completion_bytes[:max_new_tokens]
completion_logits = torch.cat(completion_logits[:max_new_tokens], dim=0)
completion_text = self.splitter.decode(completion_bytes)
return completion_text, completion_logits
@torch.no_grad()
def _generate_uncached(
self,
input_ids: torch.Tensor,
max_new_tokens: int,
cumulative_seq_lengths_per_word: torch.Tensor,
byte_position_ids: torch.Tensor | None = None,
word_position_ids: torch.Tensor | None = None,
sample_fn=sample_argmax,
stop_sequences: Sequence[str] | None = None,
):
if byte_position_ids is None:
byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
if word_position_ids is None:
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
word_list = []
for i in range(1, cumulative_seq_lengths_per_word.shape[0]):
start_idx = cumulative_seq_lengths_per_word[i - 1]
end_idx = cumulative_seq_lengths_per_word[i]
word_list.append(input_ids[:, start_idx:end_idx].squeeze(0).tolist())
completion_bytes = []
for _ in range(max_new_tokens):
output = self.forward(
input_ids=input_ids,
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
byte_position_ids=byte_position_ids,
word_position_ids=word_position_ids,
past_key_values=None,
)
next_byte = int(sample_fn(output.logits).item())
completion_bytes.append(next_byte)
if next_byte == self.eos_token_id:
break
word_list = self._append_byte(word_list, next_byte)
input_ids = torch.tensor(sum(word_list, []), dtype=torch.long, device=input_ids.device).unsqueeze(0)
cumulative_seq_lengths_per_word = torch.tensor([0] + list(itertools.accumulate(len(word) for word in word_list if len(word) > 0)), dtype=torch.int32, device=input_ids.device)
byte_position_ids = torch.arange(0, input_ids.shape[1], device=input_ids.device, dtype=torch.int32).unsqueeze(0)
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
if stop_sequences is not None:
try:
completion_text_tmp = self.splitter.decode(completion_bytes)
if any(completion_text_tmp.endswith(stop_sequence) for stop_sequence in stop_sequences):
break
except Exception as e:
print("Cannot compare stop sequence", e)
completion_text = self.splitter.decode(completion_bytes)
completion_logits = output.logits[0, -len(completion_bytes) :, :]
return completion_text, completion_logits
def _prepare_input(self, input_str: str, add_llama_template: bool = True, device: torch.device | None = None) -> tuple[torch.Tensor, torch.Tensor]:
if add_llama_template:
input_str = LLAMA_TEMPLATE.format(input=input_str)
if device is None:
assert torch.cuda.is_available(), "CUDA is not available"
device = torch.device("cuda")
input_ids_list = []
cumulative_per_word_lengths_list = [0]
words = self.splitter.encode(input_str)
for word in words:
input_ids_list.extend(word)
word_length = len(word)
cumulative_per_word_lengths_list.append(cumulative_per_word_lengths_list[-1] + word_length)
input_ids = torch.tensor(input_ids_list, device=device, dtype=torch.int32).unsqueeze(0)
cumulative_per_word_lengths = torch.tensor(cumulative_per_word_lengths_list, device=device, dtype=torch.int32)
return input_ids, cumulative_per_word_lengths
|