File size: 1,406 Bytes
56b5e76
 
 
cbc858d
56b5e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc858d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: other
tags:
- image-segmentation
model-index:
- name: segformer-b0-finetuned-fish-almogm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-fish-almogm

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0068
- eval_mean_iou: 0.4831
- eval_mean_accuracy: 1.0000
- eval_overall_accuracy: 1.0000
- eval_accuracy_background: 1.0000
- eval_accuracy_fish: nan
- eval_iou_background: 0.9662
- eval_iou_fish: 0.0
- eval_runtime: 62.449
- eval_samples_per_second: 0.801
- eval_steps_per_second: 0.4
- epoch: 6.46
- step: 640

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2