AmberYifan commited on
Commit
a5c4a53
·
verified ·
1 Parent(s): c6fdc47

Training in progress, epoch 1, checkpoint

Browse files
last-checkpoint/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
last-checkpoint/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AmberYifan/Qwen2-7B-sft-ultrachat",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.3",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
last-checkpoint/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.46.3"
6
+ }
last-checkpoint/global_step624/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f32dec8644917475925a0d13c9726a987e6b2f690f22f21fe5bf9d023010792
3
+ size 30462473157
last-checkpoint/global_step624/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50c0ede74301937dc1fdcb77a1ce8d86101f3375cf9d30fe0ccc1cf6a1e9b40d
3
+ size 30462473157
last-checkpoint/global_step624/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:854712bccaca1c43b5fd35ee6b541a9adac74b0febd8a9377325e524cab328db
3
+ size 168021
last-checkpoint/global_step624/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:385d9c31544da8e459feb453cc11443ff4ede677c002f848caa8c63c38005d58
3
+ size 168021
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step624
last-checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20efe7c264677e0f9a5df6e20f636c9433a4a35e54826ee4551ee8e2d5361a7d
3
+ size 4877660776
last-checkpoint/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5515a77b35ac7c222c11b7cabba7cf7bca932d998dbd3bdca7af8d42d3482afb
3
+ size 4932751008
last-checkpoint/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:537f211f17ab9b613bdbc7b4104a2e970cb1c7c57c48b35d80bc4c023edf12ea
3
+ size 4330865200
last-checkpoint/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07dd088742f531a5ddf67fb925ae2019eb87b14e1ab1c025b7011f361b3118d6
3
+ size 1089994880
last-checkpoint/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b580656286e8a6f334aced7bdb46499a54f3bb95644a0167405da037afbd894d
3
+ size 14768
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a763d1d109f11374f3725ac97283433a5c2264a51fd11d55a5af0441e79bbe2c
3
+ size 14768
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7610a99e142b065e838a824430a3e077aa4e276737f2b127e167b9a68d475291
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
last-checkpoint/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcfe42da0a4497e8b2b172c1f9f4ec423a46dc12907f4349c55025f670422ba9
3
+ size 11418266
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "max_length": 1024,
39
+ "model_max_length": 32768,
40
+ "pad_token": "<|endoftext|>",
41
+ "split_special_tokens": false,
42
+ "stride": 0,
43
+ "tokenizer_class": "Qwen2Tokenizer",
44
+ "truncation_side": "left",
45
+ "truncation_strategy": "longest_first",
46
+ "unk_token": null
47
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,994 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 624,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0016025641025641025,
13
+ "grad_norm": 81.23951893705919,
14
+ "learning_rate": 2.6595744680851063e-09,
15
+ "logits/chosen": 0.1357421875,
16
+ "logits/rejected": -0.2060546875,
17
+ "logps/chosen": -336.0,
18
+ "logps/rejected": -346.0,
19
+ "loss": 0.6914,
20
+ "rewards/accuracies": 0.0,
21
+ "rewards/chosen": 0.0,
22
+ "rewards/margins": 0.0,
23
+ "rewards/rejected": 0.0,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.016025641025641024,
28
+ "grad_norm": 86.32419393322078,
29
+ "learning_rate": 2.6595744680851062e-08,
30
+ "logits/chosen": -0.16015625,
31
+ "logits/rejected": -0.474609375,
32
+ "logps/chosen": -364.0,
33
+ "logps/rejected": -312.0,
34
+ "loss": 0.702,
35
+ "rewards/accuracies": 0.1527777761220932,
36
+ "rewards/chosen": -0.009033203125,
37
+ "rewards/margins": -0.01806640625,
38
+ "rewards/rejected": 0.009033203125,
39
+ "step": 10
40
+ },
41
+ {
42
+ "epoch": 0.03205128205128205,
43
+ "grad_norm": 100.77964496481692,
44
+ "learning_rate": 5.3191489361702123e-08,
45
+ "logits/chosen": -0.16796875,
46
+ "logits/rejected": -0.466796875,
47
+ "logps/chosen": -376.0,
48
+ "logps/rejected": -310.0,
49
+ "loss": 0.6939,
50
+ "rewards/accuracies": 0.21250000596046448,
51
+ "rewards/chosen": -0.006561279296875,
52
+ "rewards/margins": -0.0021820068359375,
53
+ "rewards/rejected": -0.00439453125,
54
+ "step": 20
55
+ },
56
+ {
57
+ "epoch": 0.04807692307692308,
58
+ "grad_norm": 98.51227524666062,
59
+ "learning_rate": 7.978723404255319e-08,
60
+ "logits/chosen": -0.22265625,
61
+ "logits/rejected": -0.5234375,
62
+ "logps/chosen": -390.0,
63
+ "logps/rejected": -332.0,
64
+ "loss": 0.6834,
65
+ "rewards/accuracies": 0.3375000059604645,
66
+ "rewards/chosen": 0.0419921875,
67
+ "rewards/margins": 0.03515625,
68
+ "rewards/rejected": 0.00689697265625,
69
+ "step": 30
70
+ },
71
+ {
72
+ "epoch": 0.0641025641025641,
73
+ "grad_norm": 73.06116455998657,
74
+ "learning_rate": 1.0638297872340425e-07,
75
+ "logits/chosen": -0.23828125,
76
+ "logits/rejected": -0.4296875,
77
+ "logps/chosen": -370.0,
78
+ "logps/rejected": -304.0,
79
+ "loss": 0.6555,
80
+ "rewards/accuracies": 0.5375000238418579,
81
+ "rewards/chosen": 0.142578125,
82
+ "rewards/margins": 0.09521484375,
83
+ "rewards/rejected": 0.046875,
84
+ "step": 40
85
+ },
86
+ {
87
+ "epoch": 0.08012820512820513,
88
+ "grad_norm": 76.17217165247452,
89
+ "learning_rate": 1.329787234042553e-07,
90
+ "logits/chosen": -0.2421875,
91
+ "logits/rejected": -0.46875,
92
+ "logps/chosen": -382.0,
93
+ "logps/rejected": -302.0,
94
+ "loss": 0.6393,
95
+ "rewards/accuracies": 0.6875,
96
+ "rewards/chosen": 0.2578125,
97
+ "rewards/margins": 0.177734375,
98
+ "rewards/rejected": 0.07958984375,
99
+ "step": 50
100
+ },
101
+ {
102
+ "epoch": 0.09615384615384616,
103
+ "grad_norm": 61.759030001028826,
104
+ "learning_rate": 1.5957446808510638e-07,
105
+ "logits/chosen": -0.0164794921875,
106
+ "logits/rejected": -0.291015625,
107
+ "logps/chosen": -358.0,
108
+ "logps/rejected": -306.0,
109
+ "loss": 0.6168,
110
+ "rewards/accuracies": 0.675000011920929,
111
+ "rewards/chosen": 0.376953125,
112
+ "rewards/margins": 0.2255859375,
113
+ "rewards/rejected": 0.15234375,
114
+ "step": 60
115
+ },
116
+ {
117
+ "epoch": 0.11217948717948718,
118
+ "grad_norm": 64.71686861478489,
119
+ "learning_rate": 1.8617021276595742e-07,
120
+ "logits/chosen": -0.283203125,
121
+ "logits/rejected": -0.50390625,
122
+ "logps/chosen": -396.0,
123
+ "logps/rejected": -292.0,
124
+ "loss": 0.5847,
125
+ "rewards/accuracies": 0.800000011920929,
126
+ "rewards/chosen": 0.58203125,
127
+ "rewards/margins": 0.37890625,
128
+ "rewards/rejected": 0.201171875,
129
+ "step": 70
130
+ },
131
+ {
132
+ "epoch": 0.1282051282051282,
133
+ "grad_norm": 52.52316366702727,
134
+ "learning_rate": 2.127659574468085e-07,
135
+ "logits/chosen": -0.35546875,
136
+ "logits/rejected": -0.66796875,
137
+ "logps/chosen": -368.0,
138
+ "logps/rejected": -302.0,
139
+ "loss": 0.5555,
140
+ "rewards/accuracies": 0.737500011920929,
141
+ "rewards/chosen": 0.6640625,
142
+ "rewards/margins": 0.484375,
143
+ "rewards/rejected": 0.1787109375,
144
+ "step": 80
145
+ },
146
+ {
147
+ "epoch": 0.14423076923076922,
148
+ "grad_norm": 59.670100120011845,
149
+ "learning_rate": 2.393617021276596e-07,
150
+ "logits/chosen": -0.251953125,
151
+ "logits/rejected": -0.55078125,
152
+ "logps/chosen": -388.0,
153
+ "logps/rejected": -312.0,
154
+ "loss": 0.539,
155
+ "rewards/accuracies": 0.7749999761581421,
156
+ "rewards/chosen": 0.8046875,
157
+ "rewards/margins": 0.5703125,
158
+ "rewards/rejected": 0.2353515625,
159
+ "step": 90
160
+ },
161
+ {
162
+ "epoch": 0.16025641025641027,
163
+ "grad_norm": 66.87233629909264,
164
+ "learning_rate": 2.659574468085106e-07,
165
+ "logits/chosen": -0.314453125,
166
+ "logits/rejected": -0.478515625,
167
+ "logps/chosen": -346.0,
168
+ "logps/rejected": -324.0,
169
+ "loss": 0.4916,
170
+ "rewards/accuracies": 0.699999988079071,
171
+ "rewards/chosen": 0.85546875,
172
+ "rewards/margins": 0.48046875,
173
+ "rewards/rejected": 0.373046875,
174
+ "step": 100
175
+ },
176
+ {
177
+ "epoch": 0.1762820512820513,
178
+ "grad_norm": 53.961384431262026,
179
+ "learning_rate": 2.925531914893617e-07,
180
+ "logits/chosen": -0.294921875,
181
+ "logits/rejected": -0.65625,
182
+ "logps/chosen": -386.0,
183
+ "logps/rejected": -306.0,
184
+ "loss": 0.5006,
185
+ "rewards/accuracies": 0.824999988079071,
186
+ "rewards/chosen": 0.9140625,
187
+ "rewards/margins": 0.640625,
188
+ "rewards/rejected": 0.275390625,
189
+ "step": 110
190
+ },
191
+ {
192
+ "epoch": 0.19230769230769232,
193
+ "grad_norm": 49.6732649258676,
194
+ "learning_rate": 3.1914893617021275e-07,
195
+ "logits/chosen": -0.298828125,
196
+ "logits/rejected": -0.40234375,
197
+ "logps/chosen": -388.0,
198
+ "logps/rejected": -308.0,
199
+ "loss": 0.4499,
200
+ "rewards/accuracies": 0.7250000238418579,
201
+ "rewards/chosen": 1.1171875,
202
+ "rewards/margins": 0.82421875,
203
+ "rewards/rejected": 0.29296875,
204
+ "step": 120
205
+ },
206
+ {
207
+ "epoch": 0.20833333333333334,
208
+ "grad_norm": 52.819440458631206,
209
+ "learning_rate": 3.457446808510638e-07,
210
+ "logits/chosen": -0.1591796875,
211
+ "logits/rejected": -0.28515625,
212
+ "logps/chosen": -374.0,
213
+ "logps/rejected": -280.0,
214
+ "loss": 0.4087,
215
+ "rewards/accuracies": 0.887499988079071,
216
+ "rewards/chosen": 1.3671875,
217
+ "rewards/margins": 1.203125,
218
+ "rewards/rejected": 0.16015625,
219
+ "step": 130
220
+ },
221
+ {
222
+ "epoch": 0.22435897435897437,
223
+ "grad_norm": 45.055792147900604,
224
+ "learning_rate": 3.7234042553191484e-07,
225
+ "logits/chosen": -0.2177734375,
226
+ "logits/rejected": -0.380859375,
227
+ "logps/chosen": -364.0,
228
+ "logps/rejected": -300.0,
229
+ "loss": 0.4263,
230
+ "rewards/accuracies": 0.862500011920929,
231
+ "rewards/chosen": 1.328125,
232
+ "rewards/margins": 1.1640625,
233
+ "rewards/rejected": 0.1650390625,
234
+ "step": 140
235
+ },
236
+ {
237
+ "epoch": 0.2403846153846154,
238
+ "grad_norm": 37.20442727443192,
239
+ "learning_rate": 3.989361702127659e-07,
240
+ "logits/chosen": -0.208984375,
241
+ "logits/rejected": -0.421875,
242
+ "logps/chosen": -392.0,
243
+ "logps/rejected": -310.0,
244
+ "loss": 0.4273,
245
+ "rewards/accuracies": 0.8500000238418579,
246
+ "rewards/chosen": 1.3671875,
247
+ "rewards/margins": 1.265625,
248
+ "rewards/rejected": 0.10205078125,
249
+ "step": 150
250
+ },
251
+ {
252
+ "epoch": 0.2564102564102564,
253
+ "grad_norm": 67.23258640755056,
254
+ "learning_rate": 4.25531914893617e-07,
255
+ "logits/chosen": -0.1416015625,
256
+ "logits/rejected": -0.365234375,
257
+ "logps/chosen": -380.0,
258
+ "logps/rejected": -322.0,
259
+ "loss": 0.3995,
260
+ "rewards/accuracies": 0.7875000238418579,
261
+ "rewards/chosen": 1.1484375,
262
+ "rewards/margins": 1.1953125,
263
+ "rewards/rejected": -0.047119140625,
264
+ "step": 160
265
+ },
266
+ {
267
+ "epoch": 0.2724358974358974,
268
+ "grad_norm": 76.82700510564892,
269
+ "learning_rate": 4.5212765957446806e-07,
270
+ "logits/chosen": -0.1376953125,
271
+ "logits/rejected": -0.42578125,
272
+ "logps/chosen": -360.0,
273
+ "logps/rejected": -312.0,
274
+ "loss": 0.4255,
275
+ "rewards/accuracies": 0.800000011920929,
276
+ "rewards/chosen": 1.1171875,
277
+ "rewards/margins": 1.125,
278
+ "rewards/rejected": -0.0093994140625,
279
+ "step": 170
280
+ },
281
+ {
282
+ "epoch": 0.28846153846153844,
283
+ "grad_norm": 57.73247757369804,
284
+ "learning_rate": 4.787234042553192e-07,
285
+ "logits/chosen": -0.083984375,
286
+ "logits/rejected": -0.1953125,
287
+ "logps/chosen": -368.0,
288
+ "logps/rejected": -316.0,
289
+ "loss": 0.3897,
290
+ "rewards/accuracies": 0.800000011920929,
291
+ "rewards/chosen": 1.3125,
292
+ "rewards/margins": 1.328125,
293
+ "rewards/rejected": -0.01129150390625,
294
+ "step": 180
295
+ },
296
+ {
297
+ "epoch": 0.30448717948717946,
298
+ "grad_norm": 93.3245464788157,
299
+ "learning_rate": 4.994061757719714e-07,
300
+ "logits/chosen": -0.158203125,
301
+ "logits/rejected": -0.408203125,
302
+ "logps/chosen": -344.0,
303
+ "logps/rejected": -318.0,
304
+ "loss": 0.4427,
305
+ "rewards/accuracies": 0.8500000238418579,
306
+ "rewards/chosen": 1.3828125,
307
+ "rewards/margins": 1.515625,
308
+ "rewards/rejected": -0.130859375,
309
+ "step": 190
310
+ },
311
+ {
312
+ "epoch": 0.32051282051282054,
313
+ "grad_norm": 31.0057130908168,
314
+ "learning_rate": 4.96437054631829e-07,
315
+ "logits/chosen": -0.185546875,
316
+ "logits/rejected": -0.333984375,
317
+ "logps/chosen": -398.0,
318
+ "logps/rejected": -276.0,
319
+ "loss": 0.3853,
320
+ "rewards/accuracies": 0.8999999761581421,
321
+ "rewards/chosen": 1.2578125,
322
+ "rewards/margins": 1.5546875,
323
+ "rewards/rejected": -0.298828125,
324
+ "step": 200
325
+ },
326
+ {
327
+ "epoch": 0.33653846153846156,
328
+ "grad_norm": 31.866164526406457,
329
+ "learning_rate": 4.934679334916864e-07,
330
+ "logits/chosen": -0.134765625,
331
+ "logits/rejected": -0.427734375,
332
+ "logps/chosen": -372.0,
333
+ "logps/rejected": -334.0,
334
+ "loss": 0.2608,
335
+ "rewards/accuracies": 0.9125000238418579,
336
+ "rewards/chosen": 1.4375,
337
+ "rewards/margins": 1.703125,
338
+ "rewards/rejected": -0.267578125,
339
+ "step": 210
340
+ },
341
+ {
342
+ "epoch": 0.3525641025641026,
343
+ "grad_norm": 26.376971522466825,
344
+ "learning_rate": 4.904988123515439e-07,
345
+ "logits/chosen": -0.0673828125,
346
+ "logits/rejected": -0.150390625,
347
+ "logps/chosen": -392.0,
348
+ "logps/rejected": -294.0,
349
+ "loss": 0.313,
350
+ "rewards/accuracies": 0.875,
351
+ "rewards/chosen": 1.6796875,
352
+ "rewards/margins": 1.921875,
353
+ "rewards/rejected": -0.2451171875,
354
+ "step": 220
355
+ },
356
+ {
357
+ "epoch": 0.3685897435897436,
358
+ "grad_norm": 19.856366106787778,
359
+ "learning_rate": 4.875296912114014e-07,
360
+ "logits/chosen": -0.068359375,
361
+ "logits/rejected": -0.373046875,
362
+ "logps/chosen": -342.0,
363
+ "logps/rejected": -298.0,
364
+ "loss": 0.2838,
365
+ "rewards/accuracies": 0.875,
366
+ "rewards/chosen": 1.46875,
367
+ "rewards/margins": 2.125,
368
+ "rewards/rejected": -0.65625,
369
+ "step": 230
370
+ },
371
+ {
372
+ "epoch": 0.38461538461538464,
373
+ "grad_norm": 55.84167138753407,
374
+ "learning_rate": 4.845605700712589e-07,
375
+ "logits/chosen": -0.12890625,
376
+ "logits/rejected": -0.443359375,
377
+ "logps/chosen": -368.0,
378
+ "logps/rejected": -322.0,
379
+ "loss": 0.2748,
380
+ "rewards/accuracies": 0.862500011920929,
381
+ "rewards/chosen": 1.5546875,
382
+ "rewards/margins": 2.5,
383
+ "rewards/rejected": -0.953125,
384
+ "step": 240
385
+ },
386
+ {
387
+ "epoch": 0.40064102564102566,
388
+ "grad_norm": 37.23188688423797,
389
+ "learning_rate": 4.815914489311164e-07,
390
+ "logits/chosen": -0.1357421875,
391
+ "logits/rejected": -0.427734375,
392
+ "logps/chosen": -364.0,
393
+ "logps/rejected": -324.0,
394
+ "loss": 0.2543,
395
+ "rewards/accuracies": 0.9375,
396
+ "rewards/chosen": 1.6640625,
397
+ "rewards/margins": 2.734375,
398
+ "rewards/rejected": -1.0703125,
399
+ "step": 250
400
+ },
401
+ {
402
+ "epoch": 0.4166666666666667,
403
+ "grad_norm": 35.660892697083206,
404
+ "learning_rate": 4.786223277909738e-07,
405
+ "logits/chosen": -0.123046875,
406
+ "logits/rejected": -0.470703125,
407
+ "logps/chosen": -366.0,
408
+ "logps/rejected": -310.0,
409
+ "loss": 0.2583,
410
+ "rewards/accuracies": 0.862500011920929,
411
+ "rewards/chosen": 1.1484375,
412
+ "rewards/margins": 2.375,
413
+ "rewards/rejected": -1.234375,
414
+ "step": 260
415
+ },
416
+ {
417
+ "epoch": 0.4326923076923077,
418
+ "grad_norm": 46.54757231137472,
419
+ "learning_rate": 4.756532066508313e-07,
420
+ "logits/chosen": -0.2021484375,
421
+ "logits/rejected": -0.328125,
422
+ "logps/chosen": -374.0,
423
+ "logps/rejected": -340.0,
424
+ "loss": 0.4125,
425
+ "rewards/accuracies": 0.762499988079071,
426
+ "rewards/chosen": 1.1015625,
427
+ "rewards/margins": 1.9765625,
428
+ "rewards/rejected": -0.875,
429
+ "step": 270
430
+ },
431
+ {
432
+ "epoch": 0.44871794871794873,
433
+ "grad_norm": 37.544511359682254,
434
+ "learning_rate": 4.7268408551068883e-07,
435
+ "logits/chosen": 0.03857421875,
436
+ "logits/rejected": -0.54296875,
437
+ "logps/chosen": -384.0,
438
+ "logps/rejected": -342.0,
439
+ "loss": 0.2471,
440
+ "rewards/accuracies": 0.862500011920929,
441
+ "rewards/chosen": 1.1796875,
442
+ "rewards/margins": 2.5,
443
+ "rewards/rejected": -1.3203125,
444
+ "step": 280
445
+ },
446
+ {
447
+ "epoch": 0.46474358974358976,
448
+ "grad_norm": 56.789270954370565,
449
+ "learning_rate": 4.697149643705463e-07,
450
+ "logits/chosen": -0.07958984375,
451
+ "logits/rejected": -0.29296875,
452
+ "logps/chosen": -348.0,
453
+ "logps/rejected": -328.0,
454
+ "loss": 0.297,
455
+ "rewards/accuracies": 0.887499988079071,
456
+ "rewards/chosen": 1.4140625,
457
+ "rewards/margins": 2.46875,
458
+ "rewards/rejected": -1.0546875,
459
+ "step": 290
460
+ },
461
+ {
462
+ "epoch": 0.4807692307692308,
463
+ "grad_norm": 14.22992572113077,
464
+ "learning_rate": 4.667458432304038e-07,
465
+ "logits/chosen": -0.2021484375,
466
+ "logits/rejected": -0.388671875,
467
+ "logps/chosen": -372.0,
468
+ "logps/rejected": -322.0,
469
+ "loss": 0.2564,
470
+ "rewards/accuracies": 0.887499988079071,
471
+ "rewards/chosen": 1.6796875,
472
+ "rewards/margins": 2.765625,
473
+ "rewards/rejected": -1.0859375,
474
+ "step": 300
475
+ },
476
+ {
477
+ "epoch": 0.4967948717948718,
478
+ "grad_norm": 36.87971897536812,
479
+ "learning_rate": 4.6377672209026127e-07,
480
+ "logits/chosen": -0.10888671875,
481
+ "logits/rejected": -0.412109375,
482
+ "logps/chosen": -390.0,
483
+ "logps/rejected": -330.0,
484
+ "loss": 0.1529,
485
+ "rewards/accuracies": 0.9624999761581421,
486
+ "rewards/chosen": 2.109375,
487
+ "rewards/margins": 3.328125,
488
+ "rewards/rejected": -1.2109375,
489
+ "step": 310
490
+ },
491
+ {
492
+ "epoch": 0.5128205128205128,
493
+ "grad_norm": 31.81729836940978,
494
+ "learning_rate": 4.6080760095011875e-07,
495
+ "logits/chosen": -0.154296875,
496
+ "logits/rejected": -0.35546875,
497
+ "logps/chosen": -374.0,
498
+ "logps/rejected": -304.0,
499
+ "loss": 0.26,
500
+ "rewards/accuracies": 0.887499988079071,
501
+ "rewards/chosen": 1.859375,
502
+ "rewards/margins": 2.875,
503
+ "rewards/rejected": -1.0234375,
504
+ "step": 320
505
+ },
506
+ {
507
+ "epoch": 0.5288461538461539,
508
+ "grad_norm": 27.609497368983103,
509
+ "learning_rate": 4.578384798099763e-07,
510
+ "logits/chosen": -0.0849609375,
511
+ "logits/rejected": -0.515625,
512
+ "logps/chosen": -338.0,
513
+ "logps/rejected": -328.0,
514
+ "loss": 0.2903,
515
+ "rewards/accuracies": 0.925000011920929,
516
+ "rewards/chosen": 1.6953125,
517
+ "rewards/margins": 2.859375,
518
+ "rewards/rejected": -1.171875,
519
+ "step": 330
520
+ },
521
+ {
522
+ "epoch": 0.5448717948717948,
523
+ "grad_norm": 65.37858577012295,
524
+ "learning_rate": 4.548693586698337e-07,
525
+ "logits/chosen": -0.11083984375,
526
+ "logits/rejected": -0.28125,
527
+ "logps/chosen": -382.0,
528
+ "logps/rejected": -338.0,
529
+ "loss": 0.3046,
530
+ "rewards/accuracies": 0.862500011920929,
531
+ "rewards/chosen": 1.7421875,
532
+ "rewards/margins": 3.15625,
533
+ "rewards/rejected": -1.4140625,
534
+ "step": 340
535
+ },
536
+ {
537
+ "epoch": 0.5608974358974359,
538
+ "grad_norm": 53.122076726933024,
539
+ "learning_rate": 4.519002375296912e-07,
540
+ "logits/chosen": -0.1123046875,
541
+ "logits/rejected": -0.46875,
542
+ "logps/chosen": -370.0,
543
+ "logps/rejected": -358.0,
544
+ "loss": 0.3242,
545
+ "rewards/accuracies": 0.8500000238418579,
546
+ "rewards/chosen": 1.390625,
547
+ "rewards/margins": 2.765625,
548
+ "rewards/rejected": -1.375,
549
+ "step": 350
550
+ },
551
+ {
552
+ "epoch": 0.5769230769230769,
553
+ "grad_norm": 29.215237884321418,
554
+ "learning_rate": 4.4893111638954866e-07,
555
+ "logits/chosen": -0.267578125,
556
+ "logits/rejected": -0.3515625,
557
+ "logps/chosen": -380.0,
558
+ "logps/rejected": -324.0,
559
+ "loss": 0.1967,
560
+ "rewards/accuracies": 0.9375,
561
+ "rewards/chosen": 1.5390625,
562
+ "rewards/margins": 3.296875,
563
+ "rewards/rejected": -1.7578125,
564
+ "step": 360
565
+ },
566
+ {
567
+ "epoch": 0.592948717948718,
568
+ "grad_norm": 23.99951739667445,
569
+ "learning_rate": 4.4596199524940614e-07,
570
+ "logits/chosen": -0.24609375,
571
+ "logits/rejected": -0.376953125,
572
+ "logps/chosen": -392.0,
573
+ "logps/rejected": -328.0,
574
+ "loss": 0.2886,
575
+ "rewards/accuracies": 0.824999988079071,
576
+ "rewards/chosen": 1.0234375,
577
+ "rewards/margins": 2.515625,
578
+ "rewards/rejected": -1.5,
579
+ "step": 370
580
+ },
581
+ {
582
+ "epoch": 0.6089743589743589,
583
+ "grad_norm": 73.48089183856715,
584
+ "learning_rate": 4.429928741092636e-07,
585
+ "logits/chosen": -0.1640625,
586
+ "logits/rejected": -0.443359375,
587
+ "logps/chosen": -378.0,
588
+ "logps/rejected": -346.0,
589
+ "loss": 0.2243,
590
+ "rewards/accuracies": 0.9125000238418579,
591
+ "rewards/chosen": 1.53125,
592
+ "rewards/margins": 3.125,
593
+ "rewards/rejected": -1.59375,
594
+ "step": 380
595
+ },
596
+ {
597
+ "epoch": 0.625,
598
+ "grad_norm": 34.2482977900771,
599
+ "learning_rate": 4.4002375296912115e-07,
600
+ "logits/chosen": -0.109375,
601
+ "logits/rejected": -0.5625,
602
+ "logps/chosen": -382.0,
603
+ "logps/rejected": -344.0,
604
+ "loss": 0.1972,
605
+ "rewards/accuracies": 0.8999999761581421,
606
+ "rewards/chosen": 1.46875,
607
+ "rewards/margins": 3.09375,
608
+ "rewards/rejected": -1.6328125,
609
+ "step": 390
610
+ },
611
+ {
612
+ "epoch": 0.6410256410256411,
613
+ "grad_norm": 46.4216688916151,
614
+ "learning_rate": 4.3705463182897863e-07,
615
+ "logits/chosen": -0.1435546875,
616
+ "logits/rejected": -0.3359375,
617
+ "logps/chosen": -372.0,
618
+ "logps/rejected": -340.0,
619
+ "loss": 0.2644,
620
+ "rewards/accuracies": 0.949999988079071,
621
+ "rewards/chosen": 2.265625,
622
+ "rewards/margins": 3.796875,
623
+ "rewards/rejected": -1.53125,
624
+ "step": 400
625
+ },
626
+ {
627
+ "epoch": 0.657051282051282,
628
+ "grad_norm": 44.3943999019337,
629
+ "learning_rate": 4.340855106888361e-07,
630
+ "logits/chosen": -0.1494140625,
631
+ "logits/rejected": -0.53515625,
632
+ "logps/chosen": -368.0,
633
+ "logps/rejected": -334.0,
634
+ "loss": 0.3043,
635
+ "rewards/accuracies": 0.9375,
636
+ "rewards/chosen": 1.6640625,
637
+ "rewards/margins": 3.265625,
638
+ "rewards/rejected": -1.59375,
639
+ "step": 410
640
+ },
641
+ {
642
+ "epoch": 0.6730769230769231,
643
+ "grad_norm": 49.38538485619709,
644
+ "learning_rate": 4.311163895486936e-07,
645
+ "logits/chosen": -0.2451171875,
646
+ "logits/rejected": -0.353515625,
647
+ "logps/chosen": -374.0,
648
+ "logps/rejected": -332.0,
649
+ "loss": 0.2839,
650
+ "rewards/accuracies": 0.7875000238418579,
651
+ "rewards/chosen": 1.5546875,
652
+ "rewards/margins": 2.96875,
653
+ "rewards/rejected": -1.4140625,
654
+ "step": 420
655
+ },
656
+ {
657
+ "epoch": 0.6891025641025641,
658
+ "grad_norm": 52.14918805667079,
659
+ "learning_rate": 4.28147268408551e-07,
660
+ "logits/chosen": -0.142578125,
661
+ "logits/rejected": -0.265625,
662
+ "logps/chosen": -392.0,
663
+ "logps/rejected": -308.0,
664
+ "loss": 0.2573,
665
+ "rewards/accuracies": 0.8500000238418579,
666
+ "rewards/chosen": 1.71875,
667
+ "rewards/margins": 3.546875,
668
+ "rewards/rejected": -1.8359375,
669
+ "step": 430
670
+ },
671
+ {
672
+ "epoch": 0.7051282051282052,
673
+ "grad_norm": 41.67427154859993,
674
+ "learning_rate": 4.251781472684085e-07,
675
+ "logits/chosen": -0.2041015625,
676
+ "logits/rejected": -0.19140625,
677
+ "logps/chosen": -382.0,
678
+ "logps/rejected": -302.0,
679
+ "loss": 0.2207,
680
+ "rewards/accuracies": 0.8999999761581421,
681
+ "rewards/chosen": 1.9609375,
682
+ "rewards/margins": 2.921875,
683
+ "rewards/rejected": -0.96484375,
684
+ "step": 440
685
+ },
686
+ {
687
+ "epoch": 0.7211538461538461,
688
+ "grad_norm": 49.967389161188926,
689
+ "learning_rate": 4.22209026128266e-07,
690
+ "logits/chosen": -0.216796875,
691
+ "logits/rejected": -0.33984375,
692
+ "logps/chosen": -368.0,
693
+ "logps/rejected": -316.0,
694
+ "loss": 0.3459,
695
+ "rewards/accuracies": 0.875,
696
+ "rewards/chosen": 1.46875,
697
+ "rewards/margins": 2.75,
698
+ "rewards/rejected": -1.28125,
699
+ "step": 450
700
+ },
701
+ {
702
+ "epoch": 0.7371794871794872,
703
+ "grad_norm": 45.29394404835159,
704
+ "learning_rate": 4.192399049881235e-07,
705
+ "logits/chosen": -0.259765625,
706
+ "logits/rejected": -0.462890625,
707
+ "logps/chosen": -392.0,
708
+ "logps/rejected": -334.0,
709
+ "loss": 0.2416,
710
+ "rewards/accuracies": 0.9125000238418579,
711
+ "rewards/chosen": 1.765625,
712
+ "rewards/margins": 3.296875,
713
+ "rewards/rejected": -1.53125,
714
+ "step": 460
715
+ },
716
+ {
717
+ "epoch": 0.7532051282051282,
718
+ "grad_norm": 49.65359950033634,
719
+ "learning_rate": 4.16270783847981e-07,
720
+ "logits/chosen": -0.09814453125,
721
+ "logits/rejected": -0.384765625,
722
+ "logps/chosen": -340.0,
723
+ "logps/rejected": -312.0,
724
+ "loss": 0.2871,
725
+ "rewards/accuracies": 0.8999999761581421,
726
+ "rewards/chosen": 2.25,
727
+ "rewards/margins": 3.34375,
728
+ "rewards/rejected": -1.09375,
729
+ "step": 470
730
+ },
731
+ {
732
+ "epoch": 0.7692307692307693,
733
+ "grad_norm": 34.79083088842419,
734
+ "learning_rate": 4.1330166270783846e-07,
735
+ "logits/chosen": -0.1796875,
736
+ "logits/rejected": -0.423828125,
737
+ "logps/chosen": -358.0,
738
+ "logps/rejected": -344.0,
739
+ "loss": 0.2121,
740
+ "rewards/accuracies": 0.925000011920929,
741
+ "rewards/chosen": 1.453125,
742
+ "rewards/margins": 3.25,
743
+ "rewards/rejected": -1.8046875,
744
+ "step": 480
745
+ },
746
+ {
747
+ "epoch": 0.7852564102564102,
748
+ "grad_norm": 24.646692522257364,
749
+ "learning_rate": 4.1033254156769594e-07,
750
+ "logits/chosen": -0.1435546875,
751
+ "logits/rejected": -0.390625,
752
+ "logps/chosen": -360.0,
753
+ "logps/rejected": -332.0,
754
+ "loss": 0.2359,
755
+ "rewards/accuracies": 0.9125000238418579,
756
+ "rewards/chosen": 1.6640625,
757
+ "rewards/margins": 3.421875,
758
+ "rewards/rejected": -1.75,
759
+ "step": 490
760
+ },
761
+ {
762
+ "epoch": 0.8012820512820513,
763
+ "grad_norm": 32.88069299074813,
764
+ "learning_rate": 4.0736342042755347e-07,
765
+ "logits/chosen": -0.216796875,
766
+ "logits/rejected": -0.5390625,
767
+ "logps/chosen": -380.0,
768
+ "logps/rejected": -328.0,
769
+ "loss": 0.2243,
770
+ "rewards/accuracies": 0.8500000238418579,
771
+ "rewards/chosen": 0.9609375,
772
+ "rewards/margins": 2.90625,
773
+ "rewards/rejected": -1.9453125,
774
+ "step": 500
775
+ },
776
+ {
777
+ "epoch": 0.8173076923076923,
778
+ "grad_norm": 35.40990218888171,
779
+ "learning_rate": 4.0439429928741095e-07,
780
+ "logits/chosen": -0.173828125,
781
+ "logits/rejected": -0.302734375,
782
+ "logps/chosen": -388.0,
783
+ "logps/rejected": -320.0,
784
+ "loss": 0.2403,
785
+ "rewards/accuracies": 0.887499988079071,
786
+ "rewards/chosen": 1.421875,
787
+ "rewards/margins": 3.203125,
788
+ "rewards/rejected": -1.78125,
789
+ "step": 510
790
+ },
791
+ {
792
+ "epoch": 0.8333333333333334,
793
+ "grad_norm": 45.40116394651564,
794
+ "learning_rate": 4.0142517814726837e-07,
795
+ "logits/chosen": -0.220703125,
796
+ "logits/rejected": -0.37109375,
797
+ "logps/chosen": -398.0,
798
+ "logps/rejected": -340.0,
799
+ "loss": 0.2562,
800
+ "rewards/accuracies": 0.875,
801
+ "rewards/chosen": 1.4375,
802
+ "rewards/margins": 3.0,
803
+ "rewards/rejected": -1.5625,
804
+ "step": 520
805
+ },
806
+ {
807
+ "epoch": 0.8493589743589743,
808
+ "grad_norm": 38.39116264620735,
809
+ "learning_rate": 3.9845605700712585e-07,
810
+ "logits/chosen": -0.1953125,
811
+ "logits/rejected": -0.244140625,
812
+ "logps/chosen": -374.0,
813
+ "logps/rejected": -288.0,
814
+ "loss": 0.2727,
815
+ "rewards/accuracies": 0.875,
816
+ "rewards/chosen": 1.3671875,
817
+ "rewards/margins": 3.046875,
818
+ "rewards/rejected": -1.6875,
819
+ "step": 530
820
+ },
821
+ {
822
+ "epoch": 0.8653846153846154,
823
+ "grad_norm": 47.38780960867294,
824
+ "learning_rate": 3.9548693586698333e-07,
825
+ "logits/chosen": -0.24609375,
826
+ "logits/rejected": -0.4140625,
827
+ "logps/chosen": -372.0,
828
+ "logps/rejected": -318.0,
829
+ "loss": 0.2017,
830
+ "rewards/accuracies": 0.949999988079071,
831
+ "rewards/chosen": 1.9296875,
832
+ "rewards/margins": 3.421875,
833
+ "rewards/rejected": -1.4921875,
834
+ "step": 540
835
+ },
836
+ {
837
+ "epoch": 0.8814102564102564,
838
+ "grad_norm": 53.98621268772635,
839
+ "learning_rate": 3.925178147268408e-07,
840
+ "logits/chosen": -0.322265625,
841
+ "logits/rejected": -0.283203125,
842
+ "logps/chosen": -358.0,
843
+ "logps/rejected": -314.0,
844
+ "loss": 0.2358,
845
+ "rewards/accuracies": 0.8999999761581421,
846
+ "rewards/chosen": 2.078125,
847
+ "rewards/margins": 3.234375,
848
+ "rewards/rejected": -1.1640625,
849
+ "step": 550
850
+ },
851
+ {
852
+ "epoch": 0.8974358974358975,
853
+ "grad_norm": 57.737496610523515,
854
+ "learning_rate": 3.8954869358669834e-07,
855
+ "logits/chosen": -0.1767578125,
856
+ "logits/rejected": -0.271484375,
857
+ "logps/chosen": -384.0,
858
+ "logps/rejected": -332.0,
859
+ "loss": 0.2313,
860
+ "rewards/accuracies": 0.875,
861
+ "rewards/chosen": 1.8125,
862
+ "rewards/margins": 3.203125,
863
+ "rewards/rejected": -1.3828125,
864
+ "step": 560
865
+ },
866
+ {
867
+ "epoch": 0.9134615384615384,
868
+ "grad_norm": 29.929989102081784,
869
+ "learning_rate": 3.865795724465558e-07,
870
+ "logits/chosen": -0.26171875,
871
+ "logits/rejected": -0.466796875,
872
+ "logps/chosen": -366.0,
873
+ "logps/rejected": -302.0,
874
+ "loss": 0.2186,
875
+ "rewards/accuracies": 0.887499988079071,
876
+ "rewards/chosen": 2.0,
877
+ "rewards/margins": 3.78125,
878
+ "rewards/rejected": -1.78125,
879
+ "step": 570
880
+ },
881
+ {
882
+ "epoch": 0.9294871794871795,
883
+ "grad_norm": 14.744590527736637,
884
+ "learning_rate": 3.836104513064133e-07,
885
+ "logits/chosen": -0.30078125,
886
+ "logits/rejected": -0.46875,
887
+ "logps/chosen": -364.0,
888
+ "logps/rejected": -324.0,
889
+ "loss": 0.1895,
890
+ "rewards/accuracies": 0.949999988079071,
891
+ "rewards/chosen": 1.84375,
892
+ "rewards/margins": 3.75,
893
+ "rewards/rejected": -1.9140625,
894
+ "step": 580
895
+ },
896
+ {
897
+ "epoch": 0.9455128205128205,
898
+ "grad_norm": 43.4367923218673,
899
+ "learning_rate": 3.806413301662708e-07,
900
+ "logits/chosen": -0.154296875,
901
+ "logits/rejected": -0.5,
902
+ "logps/chosen": -366.0,
903
+ "logps/rejected": -348.0,
904
+ "loss": 0.2121,
905
+ "rewards/accuracies": 0.875,
906
+ "rewards/chosen": 1.625,
907
+ "rewards/margins": 3.546875,
908
+ "rewards/rejected": -1.9140625,
909
+ "step": 590
910
+ },
911
+ {
912
+ "epoch": 0.9615384615384616,
913
+ "grad_norm": 14.598190302159233,
914
+ "learning_rate": 3.7767220902612825e-07,
915
+ "logits/chosen": -0.21875,
916
+ "logits/rejected": -0.35546875,
917
+ "logps/chosen": -374.0,
918
+ "logps/rejected": -328.0,
919
+ "loss": 0.2134,
920
+ "rewards/accuracies": 0.8999999761581421,
921
+ "rewards/chosen": 1.4609375,
922
+ "rewards/margins": 3.59375,
923
+ "rewards/rejected": -2.140625,
924
+ "step": 600
925
+ },
926
+ {
927
+ "epoch": 0.9775641025641025,
928
+ "grad_norm": 65.50233470122603,
929
+ "learning_rate": 3.747030878859858e-07,
930
+ "logits/chosen": -0.09375,
931
+ "logits/rejected": -0.36328125,
932
+ "logps/chosen": -348.0,
933
+ "logps/rejected": -332.0,
934
+ "loss": 0.3465,
935
+ "rewards/accuracies": 0.887499988079071,
936
+ "rewards/chosen": 1.484375,
937
+ "rewards/margins": 3.65625,
938
+ "rewards/rejected": -2.171875,
939
+ "step": 610
940
+ },
941
+ {
942
+ "epoch": 0.9935897435897436,
943
+ "grad_norm": 45.476213003555294,
944
+ "learning_rate": 3.717339667458432e-07,
945
+ "logits/chosen": -0.158203125,
946
+ "logits/rejected": -0.439453125,
947
+ "logps/chosen": -364.0,
948
+ "logps/rejected": -330.0,
949
+ "loss": 0.2557,
950
+ "rewards/accuracies": 0.875,
951
+ "rewards/chosen": 1.1796875,
952
+ "rewards/margins": 3.140625,
953
+ "rewards/rejected": -1.953125,
954
+ "step": 620
955
+ },
956
+ {
957
+ "epoch": 1.0,
958
+ "eval_logits/chosen": -0.2333984375,
959
+ "eval_logits/rejected": -0.328125,
960
+ "eval_logps/chosen": -366.0,
961
+ "eval_logps/rejected": -340.0,
962
+ "eval_loss": 0.20789062976837158,
963
+ "eval_rewards/accuracies": 0.8942307829856873,
964
+ "eval_rewards/chosen": 1.5859375,
965
+ "eval_rewards/margins": 3.375,
966
+ "eval_rewards/rejected": -1.7890625,
967
+ "eval_runtime": 28.0659,
968
+ "eval_samples_per_second": 7.126,
969
+ "eval_steps_per_second": 0.463,
970
+ "step": 624
971
+ }
972
+ ],
973
+ "logging_steps": 10,
974
+ "max_steps": 1872,
975
+ "num_input_tokens_seen": 0,
976
+ "num_train_epochs": 3,
977
+ "save_steps": 500,
978
+ "stateful_callbacks": {
979
+ "TrainerControl": {
980
+ "args": {
981
+ "should_epoch_stop": false,
982
+ "should_evaluate": false,
983
+ "should_log": false,
984
+ "should_save": true,
985
+ "should_training_stop": false
986
+ },
987
+ "attributes": {}
988
+ }
989
+ },
990
+ "total_flos": 0.0,
991
+ "train_batch_size": 8,
992
+ "trial_name": null,
993
+ "trial_params": null
994
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6771fe05f94e8dee9401657cf45b9603a35c7f83acd44525536881165218188c
3
+ size 7864
last-checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)