--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-parsbert-uncased-wnut2017 results: [] --- # bert-base-parsbert-uncased-wnut2017 This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on the [wnut2017-persian](https://huggingface.co/datasets/Amir13/wnut2017-persian) dataset. It achieves the following results on the evaluation set: - Loss: 0.4473 - Precision: 0.5374 - Recall: 0.4072 - F1: 0.4633 - Accuracy: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 106 | 0.3045 | 0.5994 | 0.2506 | 0.3534 | 0.9310 | | No log | 2.0 | 212 | 0.3051 | 0.5980 | 0.2940 | 0.3942 | 0.9352 | | No log | 3.0 | 318 | 0.2949 | 0.5284 | 0.3807 | 0.4426 | 0.9369 | | No log | 4.0 | 424 | 0.3382 | 0.5190 | 0.3940 | 0.4479 | 0.9368 | | 0.1264 | 5.0 | 530 | 0.3700 | 0.5056 | 0.3783 | 0.4328 | 0.9352 | | 0.1264 | 6.0 | 636 | 0.3975 | 0.4938 | 0.3867 | 0.4338 | 0.9350 | | 0.1264 | 7.0 | 742 | 0.4587 | 0.5450 | 0.3795 | 0.4474 | 0.9369 | | 0.1264 | 8.0 | 848 | 0.4473 | 0.5374 | 0.4072 | 0.4633 | 0.9375 | | 0.1264 | 9.0 | 954 | 0.4940 | 0.5313 | 0.3578 | 0.4276 | 0.9362 | | 0.0126 | 10.0 | 1060 | 0.5195 | 0.5631 | 0.3494 | 0.4312 | 0.9365 | | 0.0126 | 11.0 | 1166 | 0.4825 | 0.5449 | 0.3952 | 0.4581 | 0.9371 | | 0.0126 | 12.0 | 1272 | 0.4862 | 0.5288 | 0.3976 | 0.4539 | 0.9369 | | 0.0126 | 13.0 | 1378 | 0.5017 | 0.5459 | 0.3867 | 0.4528 | 0.9373 | | 0.0126 | 14.0 | 1484 | 0.4963 | 0.5403 | 0.3880 | 0.4516 | 0.9371 | | 0.0032 | 15.0 | 1590 | 0.5035 | 0.5481 | 0.3843 | 0.4518 | 0.9371 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2 ### Citation If you used the datasets and models in this repository, please cite it. ```bibtex @misc{https://doi.org/10.48550/arxiv.2302.09611, doi = {10.48550/ARXIV.2302.09611}, url = {https://arxiv.org/abs/2302.09611}, author = {Sartipi, Amir and Fatemi, Afsaneh}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ```