AnaG18 commited on
Commit
cdb85f0
·
verified ·
1 Parent(s): 921cb2b

Training complete

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/biogpt
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - ncbi_disease
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: biogpt-gpt2class-finetuned-ner
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: ncbi_disease
22
+ type: ncbi_disease
23
+ config: ncbi_disease
24
+ split: validation
25
+ args: ncbi_disease
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.42814070351758793
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.5447570332480819
33
+ - name: F1
34
+ type: f1
35
+ value: 0.47945976364659537
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.953528887448343
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # biogpt-gpt2class-finetuned-ner
45
+
46
+ This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.1597
49
+ - Precision: 0.4281
50
+ - Recall: 0.5448
51
+ - F1: 0.4795
52
+ - Accuracy: 0.9535
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 8
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 3
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.3371 | 1.0 | 679 | 0.1850 | 0.3182 | 0.4399 | 0.3693 | 0.9424 |
84
+ | 0.1771 | 2.0 | 1358 | 0.1583 | 0.4254 | 0.4962 | 0.4581 | 0.9525 |
85
+ | 0.1085 | 3.0 | 2037 | 0.1597 | 0.4281 | 0.5448 | 0.4795 | 0.9535 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.51.2
91
+ - Pytorch 2.1.0+cu121
92
+ - Datasets 3.5.0
93
+ - Tokenizers 0.21.1