--- library_name: transformers license: mit base_model: microsoft/biogpt tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: biogpt-gpt2class-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.42814070351758793 - name: Recall type: recall value: 0.5447570332480819 - name: F1 type: f1 value: 0.47945976364659537 - name: Accuracy type: accuracy value: 0.953528887448343 --- # biogpt-gpt2class-finetuned-ner This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.1597 - Precision: 0.4281 - Recall: 0.5448 - F1: 0.4795 - Accuracy: 0.9535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3371 | 1.0 | 679 | 0.1850 | 0.3182 | 0.4399 | 0.3693 | 0.9424 | | 0.1771 | 2.0 | 1358 | 0.1583 | 0.4254 | 0.4962 | 0.4581 | 0.9525 | | 0.1085 | 3.0 | 2037 | 0.1597 | 0.4281 | 0.5448 | 0.4795 | 0.9535 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.1.0+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1