Update README.md
Browse files
README.md
CHANGED
@@ -4,12 +4,10 @@ datasets:
|
|
4 |
- roneneldan/TinyStories
|
5 |
---
|
6 |
Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759
|
7 |
-
|
8 |
Based on GPT-Neo architecture.
|
9 |
|
10 |
-
|
11 |
hyperparams used to train this model:
|
12 |
-
|
13 |
"batch_size": 32,
|
14 |
"block_size": 256,
|
15 |
"lr": 5e-4,
|
@@ -24,17 +22,17 @@ hyperparams used to train this model:
|
|
24 |
"vocab_size": 50257,
|
25 |
"warmup_tokens": 10000,
|
26 |
"gradient_accumulation_steps": 8
|
27 |
-
|
28 |
------ EXAMPLE USAGE ---
|
29 |
-
|
30 |
!pip install --quiet transformers
|
31 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
32 |
model20 = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinystories-custom-20M')
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
35 |
prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked"
|
36 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
37 |
-
print("--------------20M parameter--------------------------------")
|
38 |
output = model20.generate(input_ids, temperature=0.2, max_length = 100, do_sample=True)
|
39 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
40 |
-
print(output_text)
|
|
|
|
4 |
- roneneldan/TinyStories
|
5 |
---
|
6 |
Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759
|
|
|
7 |
Based on GPT-Neo architecture.
|
8 |
|
|
|
9 |
hyperparams used to train this model:
|
10 |
+
```
|
11 |
"batch_size": 32,
|
12 |
"block_size": 256,
|
13 |
"lr": 5e-4,
|
|
|
22 |
"vocab_size": 50257,
|
23 |
"warmup_tokens": 10000,
|
24 |
"gradient_accumulation_steps": 8
|
25 |
+
```
|
26 |
------ EXAMPLE USAGE ---
|
27 |
+
```py
|
28 |
!pip install --quiet transformers
|
29 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
30 |
model20 = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinystories-custom-20M')
|
31 |
|
32 |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
33 |
prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked"
|
34 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
35 |
output = model20.generate(input_ids, temperature=0.2, max_length = 100, do_sample=True)
|
36 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
37 |
+
print(output_text)
|
38 |
+
```
|