AnirudhRajagopalan1201 commited on
Commit
3f63300
·
verified ·
1 Parent(s): 5dadbeb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -8
README.md CHANGED
@@ -4,12 +4,10 @@ datasets:
4
  - roneneldan/TinyStories
5
  ---
6
  Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759
7
-
8
  Based on GPT-Neo architecture.
9
 
10
-
11
  hyperparams used to train this model:
12
-
13
  "batch_size": 32,
14
  "block_size": 256,
15
  "lr": 5e-4,
@@ -24,17 +22,17 @@ hyperparams used to train this model:
24
  "vocab_size": 50257,
25
  "warmup_tokens": 10000,
26
  "gradient_accumulation_steps": 8
27
-
28
  ------ EXAMPLE USAGE ---
29
-
30
  !pip install --quiet transformers
31
  from transformers import AutoModelForCausalLM, AutoTokenizer
32
  model20 = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinystories-custom-20M')
33
 
34
  tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
35
  prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked"
36
- input_ids = tokenizer.encode(prompt, return_tensors="pt")
37
- print("--------------20M parameter--------------------------------")
38
  output = model20.generate(input_ids, temperature=0.2, max_length = 100, do_sample=True)
39
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
40
- print(output_text)
 
 
4
  - roneneldan/TinyStories
5
  ---
6
  Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759
 
7
  Based on GPT-Neo architecture.
8
 
 
9
  hyperparams used to train this model:
10
+ ```
11
  "batch_size": 32,
12
  "block_size": 256,
13
  "lr": 5e-4,
 
22
  "vocab_size": 50257,
23
  "warmup_tokens": 10000,
24
  "gradient_accumulation_steps": 8
25
+ ```
26
  ------ EXAMPLE USAGE ---
27
+ ```py
28
  !pip install --quiet transformers
29
  from transformers import AutoModelForCausalLM, AutoTokenizer
30
  model20 = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinystories-custom-20M')
31
 
32
  tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
33
  prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked"
34
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
 
35
  output = model20.generate(input_ids, temperature=0.2, max_length = 100, do_sample=True)
36
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
37
+ print(output_text)
38
+ ```