File size: 1,483 Bytes
c6c0c98
 
0ba0fab
 
 
 
 
 
 
c6c0c98
 
0ba0fab
 
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
c6c0c98
0ba0fab
 
 
 
 
 
 
 
 
 
 
 
c6c0c98
0ba0fab
c6c0c98
0ba0fab
 
8fb2172
c6c0c98
 
0ba0fab
c6c0c98
0ba0fab
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
model-index:
- name: wave2vec-base-Am
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wave2vec-base-Am

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:---:|
| No log        | 0.9333 | 7    | 61.5295         | 1.0 |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0