--- library_name: transformers license: apache-2.0 base_model: wu-kiot/whisper-small-am-fleurs tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-small-fc-am results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: am split: None args: am metrics: - name: Wer type: wer value: 62.73062730627307 --- # whisper-small-fc-am This model is a fine-tuned version of [wu-kiot/whisper-small-am-fleurs](https://huggingface.co/wu-kiot/whisper-small-am-fleurs) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3756 - Wer: 62.7306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2866 | 1.0 | 44 | 0.2855 | 63.9958 | | 0.1582 | 2.0 | 88 | 0.2958 | 64.1539 | | 0.0885 | 3.0 | 132 | 0.3311 | 67.4222 | | 0.0793 | 4.0 | 176 | 0.3700 | 66.4207 | | 0.0375 | 5.0 | 220 | 0.3756 | 62.7306 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0