Qwen2.5-1.5B LoRA Adapter – Dental Domain

This is a LoRA adapter fine-tuned on a dental instruction-following task using the ADA Dental Code dataset. It helps Qwen2.5-1.5B better explain dental procedure codes in plain English.

Model Details

  • Base model: Qwen/Qwen2.5-1.5B
  • Architecture: Causal language model with LoRA
  • Adapter type: PEFT (LoRA)
  • Language: English (dental/healthcare domain)
  • Dataset: TachyHealth/ADA_Dental_Code_to_SBS_V2
  • Precision: float32
  • Trained on: consumer GPU (GTX 1060, 6GB)

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

base = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-1.5B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-1.5B", trust_remote_code=True)

model = PeftModel.from_pretrained(base, "BirdieByte1024/Qwen2.5-1.5B-LoRA-dental")

prompt = """### Instruction:
Explain the following dental code.

### Code:
D7140 - Extraction, erupted tooth

### Response:"""

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Limitations

  • Requires the base model Qwen/Qwen2.5-1.5B to function
  • Does not work independently
  • Focused on ADA-style dental codes; generalization to other fields is untested

License

Same license as the base model: Apache 2.0

Downloads last month
29
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for BirdieByte1024/Qwen2.5-1.5B-LoRA-dental

Base model

Qwen/Qwen2.5-1.5B
Adapter
(315)
this model