File size: 1,765 Bytes
7141392 a1c5705 7e17501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
This is a model trained in four stages (Use with Llama-8B-Instruct or Llama-8B-Instruct abliterations)
Base Model -- 1 Gig of semi-structured pretraining data:

- Base pretraining phase 1 (Constant LR, text completion -- 20,000 steps 2/3 epoch)
- Base pretraining phase 2 (Cosine LR, text completion -- 10,000 steps 1/3 epoch)
Merge LORA into instruct model -- 100 MB of structured story-instruct data:

- Story-instruct tune phase 1 (Constant LR, ~1250 steps, 1 epoch)
- Story-instruct tune phase 2 (Cosine LR, ~1250 steps, 1 epoch)
Trained using <https://github.com/unslothai/unsloth>
Rough script:
```python
trainer = SFTTrainer(
model = model,
train_dataset = train_dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
tokenizer = tokenizer,
args = TrainingArguments(
per_device_train_batch_size = 2,
warmup_steps = 45,
num_train_epochs=2,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 15,
logging_dir="logs",
report_to="tensorboard",
output_dir = "outputs",
save_strategy=IntervalStrategy.STEPS,
save_steps=100,
save_total_limit=30,
optim = "adamw_torch_fused",
lr_scheduler_type="cosine", # <- Changed over time
learning_rate=5e-5,
weight_decay=0.10, # .15 for base pretraining
adam_beta1=0.88, # .9 for base pretraining
adam_beta2=0.99, # .999 for base pretraining
),
)
``` |