# ALIGN-SIM: A Task-Free Test Bed for Evaluating and Interpreting Sentence Embeddings ALIGN-SIM is a novel, task-free test bed for evaluating and interpreting sentence embeddings based on five intuitive semantic alignment criteria. It provides an alternative evaluation paradigm to popular task-specific benchmarks, offering deeper insights into whether sentence embeddings truly capture human-like semantic similarity. ## Overview Sentence embeddings are central to many NLP applications such as translation, question answering, and text classification. However, evaluating these dense vector representations in a way that reflects human semantic understanding remains challenging. ALIGN-SIM addresses this challenge by introducing a framework based on five semantic alignment criteria: - **Semantic Distinction:** Measures the ability of an encoder to differentiate between semantically similar sentence pairs and unrelated (random) sentence pairs. - **Synonym Replacement:** Tests if minor lexical changes (using synonyms) preserve the semantic similarity of the original sentence. - **Antonym Replacement (Paraphrase vs. Antonym):** Compares how closely a paraphrase aligns with the original sentence compared to a sentence where a key word is replaced with its antonym. - **Paraphrase without Negation:** Evaluates whether removing negation (and rephrasing) preserves the semantic meaning. - **Sentence Jumbling:** Assesses the sensitivity of the embeddings to changes in word order, ensuring that a jumbled sentence is distinctly represented. ALIGN-SIM has been used to rigorously evaluate 13 sentence embedding models—including both classical encoders (e.g., SBERT, USE, SimCSE) and modern LLM-induced embeddings (e.g., GPT-3, LLaMA, Bloom)—across multiple datasets (QQP, PAWS-WIKI, MRPC, and AFIN). ## Features - **Task-Free Evaluation:** Evaluate sentence embeddings without relying on task-specific training data. - **Comprehensive Semantic Criteria:** Assess embedding quality using five human-intuitive semantic alignment tests. - **Multiple Datasets:** Benchmark on diverse datasets to ensure robustness. - **Comparative Analysis:** Provides insights into both classical sentence encoders and LLM-induced embeddings. - **Extensive Experimental Results:** Detailed analysis demonstrating that high performance on task-specific benchmarks (e.g., SentEval) does not necessarily imply semantic alignment with human expectations. ## Installation ### Requirements - Python 3.7 or higher - [PyTorch](https://pytorch.org/) - [Hugging Face Transformers](https://huggingface.co/transformers/) - [SentenceTransformers](https://www.sbert.net/) - Other dependencies as listed in `requirements.txt` (e.g., NumPy, SciPy, scikit-learn) ### Setup Clone the repository and install dependencies: ```bash git clone https://github.com/BridgeAI-Lab/ALIGNSIM.git cd ALIGN-SIM pip install -r requirements.txt ``` # Usage ## Creating Sentence Perturbation Dataset A dataset is available for English and six other languages [Fr, es, de, zh, ja, ko]. If you want to work with a different dataset, run the code below otherwise skip this step: ``` bash python src/SentencePerturbation/sentence_perturbation.py \ --dataset_name mrpc \ --task anto \ --target_lang en \ --output_dir ./data/perturbed_dataset/ \ --save True \ --sample_size 3500 ``` ## Evaluating Sentence Encoders Run the evaluation script to test a sentence encoder against the five semantic alignment criteria. You can use any HuggingFace model for evaluaton. For example, to evaluate SBERT on the QQP dataset: ```bash python src/evaluate.py --model llama3 --dataset qqp \ --task antonym \ --gpu auto \ --batch_size 16 \ --metric cosine \ --save True ``` The script supports different models (e.g., sbert, use, simcse, gpt3-ada, llama2, etc.) and datasets (e.g., qqp, paws_wiki, mrpc, afin). We evalauted models on two metric **Cosine Similarity** and **Normalized Euclidean Distance (NED)** [# Viewing Results Evaluation results—such as similarity scores, normalized distances, and histograms—are saved in the `Results/`. Use the provided Jupyter notebooks in the `src/PlotAndTables.ipynb` folder to explore and visualize the performance of different models across the evaluation criteria.]: # # Citation If you use ALIGN-SIM in your research, please cite our work: ```bibtex @inproceedings{mahajan-etal-2024-align, title = "{ALIGN}-{SIM}: A Task-Free Test Bed for Evaluating and Interpreting Sentence Embeddings through Semantic Similarity Alignment", author = "Mahajan, Yash and Bansal, Naman and Blanco, Eduardo and Karmaker, Santu", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-emnlp.436/", doi = "10.18653/v1/2024.findings-emnlp.436", pages = "7393--7428", } ``` # Acknowledgments This work has been partially supported by NSF Standard Grant Award #2302974 and AFOSR Cooperative Agreement Award #FA9550-23-1-0426. We also acknowledge the support from Auburn University College of Engineering and the Department of CSSE.