RanXinByteDance commited on
Commit
61369f5
·
verified ·
1 Parent(s): cb6b8cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -5
README.md CHANGED
@@ -60,17 +60,22 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
60
  model = AutoModelForCausalLM.from_pretrained("bytedance-research/BFS-Prover")
61
  tokenizer = AutoTokenizer.from_pretrained("bytedance-research/BFS-Prover")
62
 
63
- # Input format example:
 
 
64
  state = "h : x = y + 2 ⊢ x - 1 = y + 1"
65
  sep = ":::"
66
- prompt = state + sep
 
67
  inputs = tokenizer(prompt, return_tensors="pt")
68
  outputs = model.generate(**inputs)
69
  tactic = tokenizer.decode(outputs[0], skip_special_tokens=True).split(sep)[1]
 
70
 
71
- # Example input-output:
72
- # Input state: "h : x = y + 2 ⊢ x - 1 = y + 1"
73
- # Model output: "{input state}:::simp [h]"
 
74
  # Final tactic: "simp [h]"
75
  ```
76
 
 
60
  model = AutoModelForCausalLM.from_pretrained("bytedance-research/BFS-Prover")
61
  tokenizer = AutoTokenizer.from_pretrained("bytedance-research/BFS-Prover")
62
 
63
+ # Input format: the model expects tactic states in the format f"{state}:::"
64
+ # The model will echo back the input state followed by the generated tactic
65
+
66
  state = "h : x = y + 2 ⊢ x - 1 = y + 1"
67
  sep = ":::"
68
+ prompt = state + sep # Creates "h : x = y + 2 ⊢ x - 1 = y + 1:::"
69
+
70
  inputs = tokenizer(prompt, return_tensors="pt")
71
  outputs = model.generate(**inputs)
72
  tactic = tokenizer.decode(outputs[0], skip_special_tokens=True).split(sep)[1]
73
+ print(tactic)
74
 
75
+ # Complete example:
76
+ # Input state: "h : x = y + 2 ⊢ x - 1 = y + 1"
77
+ # Full prompt: "h : x = y + 2 ⊢ x - 1 = y + 1:::"
78
+ # Model output: "h : x = y + 2 ⊢ x - 1 = y + 1:::simp [h]"
79
  # Final tactic: "simp [h]"
80
  ```
81