File size: 8,370 Bytes
7a0efb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683d002
 
 
d9ad05f
7a0efb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602243
418fc43
7a0efb1
 
 
 
 
 
 
 
 
 
 
 
 
 
f13a85c
7a0efb1
d86c0d9
7a0efb1
1602243
7a0efb1
1602243
7a0efb1
d86c0d9
7a0efb1
 
3ed9359
418fc43
 
 
 
 
 
 
 
b39d18f
418fc43
9e004e3
 
7a0efb1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

---
license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
- gui
library_name: transformers
---


# UI-TARS-1.5 Model

We shared the latest progress of the UI-TARS-1.5 model in [our blog](https://seed-tars.com/1.5/), which excels in playing games and performing GUI tasks.

## Introduction

UI-TARS-1.5, an open-source multimodal agent built upon a powerful vision-language model. It is capable of effectively performing diverse tasks within virtual worlds.

Leveraging the foundational architecture introduced in [our recent paper](https://arxiv.org/abs/2501.12326), UI-TARS-1.5 integrates advanced reasoning enabled by reinforcement learning. This allows the model to reason through its thoughts before taking action, significantly enhancing its performance and adaptability, particularly in inference-time scaling. Our new 1.5 version achieves state-of-the-art results across a variety of standard benchmarks, demonstrating strong reasoning capabilities and notable improvements over prior models.
<!-- ![Local Image](figures/UI-TARS.png) -->
<p align="center">
    <video controls width="480">
      <source src="https://huggingface.co/datasets/JjjFangg/Demo_video/resolve/main/GUI_demo.mp4" type="video/mp4">
    </video>

<p>
<p align="center">
    <video controls width="480">
      <source src="https://huggingface.co/datasets/JjjFangg/Demo_video/resolve/main/Game_demo.mp4" type="video/mp4">
    </video>
<p>

<!-- ![Local Image](figures/UI-TARS-vs-Previous-SOTA.png) -->
Code: https://github.com/bytedance/UI-TARS

Application: https://github.com/bytedance/UI-TARS-desktop

## Performance
**Online Benchmark Evaluation**
| Benchmark type | Benchmark                                                                                                                                       | UI-TARS-1.5 | OpenAI CUA | Claude 3.7 | Previous SOTA       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------------|
| **Computer Use** | [OSworld](https://arxiv.org/abs/2404.07972) (100 steps)                                                                                        | **42.5**     | 36.4        | 28          | 38.1 (200 step)      |
|                | [Windows Agent Arena](https://arxiv.org/abs/2409.08264) (50 steps)                                                                              | **42.1**     | -           | -           | 29.8                 |
| **Browser Use**  | [WebVoyager](https://arxiv.org/abs/2401.13919)                                                                                                 | 84.8         | **87**      | 84.1        | 87                   |
|                | [Online-Mind2web](https://arxiv.org/abs/2504.01382)                                                                                              | **75.8**     | 71          | 62.9        | 71                   |
| **Phone Use**    | [Android World](https://arxiv.org/abs/2405.14573)                                                                                              | **64.2**     | -           | -           | 59.5                 |


**Grounding Capability Evaluation**
| Benchmark | UI-TARS-1.5 | OpenAI CUA | Claude 3.7 | Previous SOTA |
|-----------|-------------|------------|------------|----------------|
| [ScreensSpot-V2](https://arxiv.org/pdf/2410.23218) | **94.2** | 87.9 | 87.6 | 91.6 |
| [ScreenSpotPro](https://arxiv.org/pdf/2504.07981v1) | **61.6** | 23.4 | 27.7 | 43.6 |



**Poki Game**

| Model       | [2048](https://poki.com/en/g/2048) | [cubinko](https://poki.com/en/g/cubinko) | [energy](https://poki.com/en/g/energy) | [free-the-key](https://poki.com/en/g/free-the-key) | [Gem-11](https://poki.com/en/g/gem-11) | [hex-frvr](https://poki.com/en/g/hex-frvr) | [Infinity-Loop](https://poki.com/en/g/infinity-loop) | [Maze:Path-of-Light](https://poki.com/en/g/maze-path-of-light) | [shapes](https://poki.com/en/g/shapes) | [snake-solver](https://poki.com/en/g/snake-solver) | [wood-blocks-3d](https://poki.com/en/g/wood-blocks-3d) | [yarn-untangle](https://poki.com/en/g/yarn-untangle) | [laser-maze-puzzle](https://poki.com/en/g/laser-maze-puzzle) | [tiles-master](https://poki.com/en/g/tiles-master) |
|-------------|-----------|--------------|-------------|-------------------|-------------|---------------|---------------------|--------------------------|-------------|--------------------|----------------------|---------------------|------------------------|---------------------|
| OpenAI CUA  | 31.04     | 0.00         | 32.80       | 0.00              | 46.27       | 92.25         | 23.08               | 35.00                    | 52.18       | 42.86              | 2.02                 | 44.56               | 80.00                  | 78.27               |
| Claude 3.7  | 43.05     | 0.00         | 41.60       | 0.00              | 0.00        | 30.76         | 2.31                | 82.00                    | 6.26        | 42.86              | 0.00                 | 13.77               | 28.00                  | 52.18               |
| UI-TARS-1.5 | 100.00    | 0.00         | 100.00      | 100.00            | 100.00      | 100.00        | 100.00              | 100.00                   | 100.00      | 100.00             | 100.00               | 100.00              | 100.00                 | 100.00              |


**Minecraft**

| Task Type   | Task Name           | [VPT](https://openai.com/index/vpt/) | [DreamerV3](https://www.nature.com/articles/s41586-025-08744-2) | Previous SOTA | UI-TARS-1.5 w/o Thought | UI-TARS-1.5 w/ Thought |
|-------------|---------------------|----------|----------------|--------------------|------------------|-----------------|
| Mine Blocks | (oak_log)               | 0.8      | 1.0            | 1.0                | 1.0              | 1.0             |
|             | (obsidian)          | 0.0      | 0.0            | 0.0                | 0.2              | 0.3             |
|             | (white_bed)               | 0.0      | 0.0            | 0.1                | 0.4              | 0.6             |
|             | **200 Tasks Avg.**  | 0.06     | 0.03           | 0.32               | 0.35             | 0.42            |
| Kill Mobs   | (mooshroom)            | 0.0      | 0.0            | 0.1                | 0.3              | 0.4             |
|             | (zombie)            | 0.4      | 0.1            | 0.6                | 0.7              | 0.9             |
|             | (chicken)          | 0.1      | 0.0            | 0.4                | 0.5              | 0.6             |
|             | **100 Tasks Avg.**  | 0.04     | 0.03           | 0.18               | 0.25             | 0.31            |

## Model Scale Comparison

This table compares performance across different model scales of UI-TARS on the OSworld benchmark.

| **Benchmark Type** | **Benchmark**                      | **UI-TARS-72B-DPO** | **UI-TARS-1.5-7B** | **UI-TARS-1.5** |
|--------------------|------------------------------------|---------------------|--------------------|-----------------|
| Computer Use       | [OSWorld](https://arxiv.org/abs/2404.07972)             | 24.6                | 27.5               | **42.5**        |
| GUI Grounding      | [ScreenSpotPro](https://arxiv.org/pdf/2504.07981v1) | 38.1                | 49.6               | **61.6**        |

The released UI-TARS-1.5-7B focuses primarily on enhancing general computer use capabilities and is not specifically optimized for game-based scenarios, where the UI-TARS-1.5 still holds a significant advantage.

## What's next
We are providing early research access to our top-performing UI-TARS-1.5 model to facilitate collaborative research. Interested researchers can contact us at [email protected].


## Citation
If you find our paper and model useful in your research, feel free to give us a cite.

```BibTeX
@article{qin2025ui,
  title={UI-TARS: Pioneering Automated GUI Interaction with Native Agents},
  author={Qin, Yujia and Ye, Yining and Fang, Junjie and Wang, Haoming and Liang, Shihao and Tian, Shizuo and Zhang, Junda and Li, Jiahao and Li, Yunxin and Huang, Shijue and others},
  journal={arXiv preprint arXiv:2501.12326},
  year={2025}
}
```