File size: 4,766 Bytes
acc977f b689892 206c09b fa41fb9 206c09b 3914ea9 206c09b 3914ea9 b689892 206c09b acc977f f6a0149 b689892 acc977f b689892 9f93c95 b689892 9f93c95 53b7b63 b689892 9f93c95 b689892 60874cd b689892 9f93c95 4bdda3d 9f93c95 5542863 9f93c95 b689892 9f93c95 b689892 9f93c95 b689892 9f93c95 53b7b63 b689892 9f93c95 b689892 53b7b63 9f93c95 b689892 2aed4ec 53b7b63 d87abb9 ad11e00 53b7b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
library_name: peft
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
- multilingual
- ASR
- Open-Source
language:
- wo
- fr
- en
model-index:
- name: whosper-large
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Test Set
type: custom
split: test
args:
language: wo
metrics:
- name: Test WER
type: wer
value: 24.23
- name: Test CER
type: cer
value: 11.35
pipeline_tag: automatic-speech-recognition
new_version: sudoping01/whosper-large-v3
---
# Whosper-large
## Model Overview
Whosper-large is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) optimized for Wolof speech recognition Senegal's primary language, while maintaining strong multilingual capabilities. Built on OpenAI's Whisper-large-v2, it advances African language processing with notable improvements in Word Error Rate (WER) and Character Error Rate (CER). Whether you're transcribing conversations, building language learning tools, or conducting research, this model is designed for researchers, developers, and students working with Wolof speech data.
### Key Strengths
- **Strong Multilingual**: Excellent performance in Wolof, French, and English
- **Code-Switching**: Handles natural language mixing, especially Wolof-French
- **Consistent Results**: Maintains quality across different languages
- **Open Source**: Released under the [apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) license
- **African NLP**: Supporting African language technology development
## Performance Metrics
- **WER**: 0.2423
- **CER**: 0.1135
## Key Features
- Strong multilingual performance (Wolof, French, English)
- Excellent performance on code-switched content
- Consistent performance across different languages
## Limitations
- Outputs in lowercase only
- Limited punctuation support
- Low performances on bad quality audios
## Training Data
Trained on diverse Wolof speech data:
- **ALFFA Public Dataset**
- **FLEURS Dataset**
- **Bus Urbain Dataset**
- **Kallama Dataset**
## Quick Start Guide
### Installation
```bash
pip install git+https://github.com/sudoping01/whosper.git
```
### Basic Usage
```python
from whosper import WhosperTranscriber
# Initialize the transcriber
transcriber = WhosperTranscriber(model_id="CAYTU/whosper-large")
# Transcribe an audio file
result = transcriber.transcribe_audio("path/to/your/audio.wav")
print(result)
```
### Training Results
| Training Loss | Epoch | Step | Validation Loss |
|---------------|-------|------|-----------------|
| 3.0514 | 1.0 | 1732 | 0.6824 |
| 2.2658 | 2.0 | 3464 | 0.5998 |
| 2.0274 | 3.0 | 5196 | 0.5282 |
| 1.48 | 4.0 | 6928 | 0.4793 |
| 1.1693 | 5.0 | 8660 | 0.4441 |
| 0.8762 | 5.9970 | 10386 | 0.4371 |
## Framework Versions
- PEFT: 0.14.1.dev0
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Contributing to African NLP
Whosper-large embodies our commitment to open science and the advancement of African language technologies. We believe that by making cutting-edge speech recognition models freely available, we can accelerate NLP development across Africa.
Join our mission to democratize AI technology:
- **Open Science**: Use and build upon our research - all code, models, and documentation are open source
- **Research Collaboration**: Integrate Whosper into your research projects and share your findings
- **Community Building**: Help us create resources for African language processing
- **Educational Impact**: Use Whosper in educational settings to train the next generation of African AI researchers
## License
[Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)
This model is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0) to encourage research, commercial use, and innovation in African language technologies while ensuring proper attribution and patent protection.
## Citation
```bibtex
@misc{whosper2025,
title={Whosper-large: A Multilingual ASR Model for Wolof with Enhanced Code-Switching Capabilities},
author={Seydou DIALLO},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/CAYTU/whosper-large},
version={1.0}
}
```
## Acknowledgments
Developed by [Seydou DIALLO](https://www.linkedin.com/in/seydou-diallo-08ab311ba) at [Caytu Robotics](https://caytu.ai)'s AI Department, building on OpenAI's [Whisper-large-v2](https://huggingface.co/openai/whisper-large-v2). Special thanks to the Wolof-speaking community and contributors advancing African language technology.
## Contact US
For any question or support contact us
Email : [email protected] |