Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,92 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- ealvaradob/phishing-dataset
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
base_model:
|
7 |
+
- CrabInHoney/urlbert-tiny-base-v4
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- url
|
11 |
+
- urls
|
12 |
+
- links
|
13 |
+
- classification
|
14 |
+
- tiny
|
15 |
+
- phishing
|
16 |
+
- urlbert
|
17 |
+
license: apache-2.0
|
18 |
+
---
|
19 |
+
This is a very small version of BERT, designed to categorize links into phishing and non-phishing links
|
20 |
+
|
21 |
+
An updated, lighter version of the old classification model for URL analysis
|
22 |
+
|
23 |
+
Old version: https://huggingface.co/CrabInHoney/urlbert-tiny-v3-phishing-classifier
|
24 |
+
##### Comparison with the previous version of urlbert phishing-classifier:
|
25 |
+
|
26 |
+
| Version | Accuracy | Precision | Recall | F1-score |
|
27 |
+
| ------------ | ------------ | ------------ | ------------ | ------------ |
|
28 |
+
| v2 | 0.9665 | 0.9756 | 0.9522 | 0.9637 |
|
29 |
+
| v3 | 0.9819 | 0.9876 | 0.9734 | 0.9805|
|
30 |
+
| **v4 (this model)** | **0.9907** | **0.9945** | **0.9855** | **0.9900** |
|
31 |
+
|
32 |
+
Model size
|
33 |
+
|
34 |
+
3.69M params
|
35 |
+
|
36 |
+
Tensor type
|
37 |
+
|
38 |
+
F32
|
39 |
+
|
40 |
+
[Dataset](https://huggingface.co/datasets/ealvaradob/phishing-dataset "Dataset")
|
41 |
+
(urls.json only)
|
42 |
+
|
43 |
+
Example:
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
from transformers import BertTokenizerFast, BertForSequenceClassification, pipeline
|
48 |
+
import torch
|
49 |
+
|
50 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
51 |
+
print(f"Используемое устройство: {device}")
|
52 |
+
|
53 |
+
model_name = "CrabInHoney/urlbert-tiny-v4-phishing-classifier"
|
54 |
+
|
55 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
56 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
57 |
+
model.to(device)
|
58 |
+
|
59 |
+
classifier = pipeline(
|
60 |
+
"text-classification",
|
61 |
+
model=model,
|
62 |
+
tokenizer=tokenizer,
|
63 |
+
device=0 if torch.cuda.is_available() else -1,
|
64 |
+
return_all_scores=True
|
65 |
+
)
|
66 |
+
|
67 |
+
test_urls = [
|
68 |
+
"huggingface.co/",
|
69 |
+
"hu991ngface.com.ru/"
|
70 |
+
]
|
71 |
+
|
72 |
+
label_mapping = {"LABEL_0": "good", "LABEL_1": "fish"}
|
73 |
+
|
74 |
+
for url in test_urls:
|
75 |
+
results = classifier(url)
|
76 |
+
print(f"\nURL: {url}")
|
77 |
+
for result in results[0]:
|
78 |
+
label = result['label']
|
79 |
+
score = result['score']
|
80 |
+
friendly_label = label_mapping.get(label, label)
|
81 |
+
print(f"Класс: {friendly_label}, вероятность: {score:.4f}")
|
82 |
+
|
83 |
+
|
84 |
+
Используемое устройство: cuda
|
85 |
+
|
86 |
+
URL: huggingface.co/
|
87 |
+
Класс: good, вероятность: 0.9710
|
88 |
+
Класс: fish, вероятность: 0.0290
|
89 |
+
|
90 |
+
URL: hu991ngface.com.ru/
|
91 |
+
Класс: good, вероятность: 0.0013
|
92 |
+
Класс: fish, вероятность: 0.9987
|