--- base_model: - ByteDance-Seed/BAGEL-7B-MoT base_model_relation: quantized pipeline_tag: any-to-any tags: - dfloat11 - df11 - lossless compression - 70% size, 100% accuracy --- # DFloat11 Compressed Model: `ByteDance-Seed/BAGEL-7B-MoT` This model uses **DFloat11** lossless compression. It's 32% smaller than the original BFloat16 model, yet produces bit-identical outputs and runs efficiently on GPUs. ### 📊 Performance Comparison | Metric | BAGEL-7B-MoT (BFloat16) | BAGEL-7B-MoT (DFloat11) | | ---------------------------------- | ------------------------- | ------------------------- | | Model Size | 29.21 GB | 19.89 GB | | Peak GPU Memory
(1024x1024 image generation) | 30.07 GB | 21.76 GB | | Generation Time
(on an A100 GPU) | 54 seconds | 58 seconds | ### 🔍 How It Works We apply Huffman coding to the exponent bits of BFloat16 model weights, which are highly compressible. We leverage hardware-aware algorithmic designs to enable highly efficient, on-the-fly weight decompression directly on the GPU. Find out more in our [research paper](https://arxiv.org/abs/2504.11651). ### 🔧 How to Use A complete usage guide is available in our GitHub repository (forked from the official Bagel repository): [https://github.com/LeanModels/Bagel-DFloat11](github.com/LeanModels/Bagel-DFloat11). ### 📄 Learn More * **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) * **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) * **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)