File size: 3,414 Bytes
c716d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model:
  - black-forest-labs/FLUX.1-Canny-dev
base_model_relation: quantized
pipeline_tag: text-to-image
tags:
- dfloat11
- df11
- lossless compression
- 70% size, 100% accuracy
---

## DFloat11 Compressed Model: `black-forest-labs/FLUX.1-Canny-dev`

This is a **losslessly compressed** version of [`black-forest-labs/FLUX.1-Canny-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) using our custom **DFloat11** format. The outputs of this compressed model are **bit-for-bit identical** to the original BFloat16 model, while reducing GPU memory consumption by approximately **30%**.

### 🔍 How It Works

DFloat11 compresses model weights using **Huffman coding** of BFloat16 exponent bits, combined with **hardware-aware algorithmic designs** that enable efficient on-the-fly decompression directly on the GPU. During inference, the weights remain compressed in GPU memory and are **decompressed just before matrix multiplications**, then **immediately discarded after use** to minimize memory footprint.

Key benefits:

* **No CPU decompression or host-device data transfer**: all operations are handled entirely on the GPU.
* DFloat11 is **much faster than CPU-offloading approaches**, enabling practical deployment in memory-constrained environments.
* The compression is **fully lossless**, guaranteeing that the model’s outputs are **bit-for-bit identical** to those of the original model.

### 🔧 How to Use

1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:

    ```bash
    pip install -U dfloat11[cuda12]
    # or if you have CUDA version 11:
    # pip install -U dfloat11[cuda11]
    ```

2. Install or upgrade the diffusers and controlnet_aux packages.

    ```bash
    pip install -U diffusers controlnet_aux
    ```

3. To use the DFloat11 model, run the following example code in Python:
    ```python
    import torch
    from controlnet_aux import CannyDetector
    from diffusers import FluxControlPipeline
    from diffusers.utils import load_image
    from dfloat11 import DFloat11Model

    pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16)
    pipe.enable_model_cpu_offload()

    DFloat11Model.from_pretrained('DFloat11/FLUX.1-Canny-dev-DF11', device='cpu', bfloat16_model=pipe.transformer)

    prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
    control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

    processor = CannyDetector()
    control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)

    image = pipe(
        prompt=prompt,
        control_image=control_image,
        height=1024,
        width=1024,
        num_inference_steps=50,
        guidance_scale=30.0,
    ).images[0]
    image.save("output.png")
    ```

### 📄 Learn More

* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)