--- base_model: - Wan-AI/Wan2.1-T2V-14B-Diffusers base_model_relation: quantized pipeline_tag: text-to-image tags: - dfloat11 - df11 - lossless compression - 70% size, 100% accuracy --- # DFloat11 Compressed Model: `Wan-AI/Wan2.1-T2V-14B-Diffusers` This model uses **DFloat11** lossless compression. It's 30% smaller than the original BFloat16 model, yet produces bit-identical outputs and runs efficiently on GPUs. ### 📊 Performance Comparison | Metric | Wan2.1-T2V-14B (BFloat16) | Wan2.1-T2V-14B (DFloat11) | | ---------------------------------- | ------------------------- | ------------------------- | | Model Size | 28.64 GB | 19.39 GB | | Peak GPU Memory
(2s 480p Video) | 30.79 GB | 22.22 GB | | Generation Time
(an A100 GPU) | 339 seconds | 348 seconds | ### 🔍 How It Works We apply Huffman coding to the exponent bits of BFloat16 model weights, which are highly compressible. We leverage hardware-aware algorithmic designs to enable highly efficient, on-the-fly weight decompression directly on the GPU. Find out more in our [research paper](https://arxiv.org/abs/2504.11651). ### 🔧 How to Use A complete usage guide is available in our GitHub repository: [https://github.com/LeanModels/DFloat11/tree/master/examples/wan2.1](https://github.com/LeanModels/DFloat11/tree/master/examples/wan2.1). ### 📄 Learn More * **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) * **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) * **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)