File size: 1,481 Bytes
6265901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import torch
import torchvision.transforms as transforms
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, datasets, models

# Define model
class RetinaNet(nn.Module):
    def __init__(self, num_classes=2):
        super(RetinaNet, self).__init__()
        self.backbone = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)

        # Freeze backbone parameters
        for param in self.backbone.parameters():
            param.requires_grad = False

        # Unfreeze later layers
        for param in self.backbone.layer3.parameters():
            param.requires_grad = True
        for param in self.backbone.layer4.parameters():
            param.requires_grad = False

        # Modified classifier head
        self.classifier = nn.Sequential(
            nn.Linear(2048, 512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
            # nn.Sigmoid()
        )

    def forward(self, x):
        x = self.backbone.conv1(x)
        x = self.backbone.bn1(x)
        x = self.backbone.relu(x)
        x = self.backbone.maxpool(x)

        x = self.backbone.layer1(x)
        x = self.backbone.layer2(x)
        x = self.backbone.layer3(x)
        x = self.backbone.layer4(x)

        x = self.backbone.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x