DimitrisMantas commited on
Commit
5422464
·
verified ·
1 Parent(s): 0d99443

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +211 -66
README.md CHANGED
@@ -1,72 +1,217 @@
1
  ---
 
 
2
  library_name: segmentation-models-pytorch
3
- license: mit
 
 
 
 
 
 
 
4
  pipeline_tag: image-segmentation
5
  tags:
6
- - model_hub_mixin
7
- - pytorch_model_hub_mixin
8
- - segmentation-models-pytorch
 
 
9
  - semantic-segmentation
10
- - pytorch
11
- languages:
12
- - python
13
  ---
14
- # DeepLabV3Plus Model Card
15
-
16
- Table of Contents:
17
- - [Load trained model](#load-trained-model)
18
- - [Model init parameters](#model-init-parameters)
19
- - [Model metrics](#model-metrics)
20
- - [Dataset](#dataset)
21
-
22
- ## Load trained model
23
- ```python
24
- import segmentation_models_pytorch as smp
25
-
26
- model = smp.from_pretrained("<save-directory-or-this-repo>")
27
- ```
28
-
29
- ## Model init parameters
30
- ```python
31
- model_init_params = {
32
- "encoder_name": "tu-resnet18d",
33
- "encoder_depth": 5,
34
- "encoder_weights": "imagenet",
35
- "encoder_output_stride": 16,
36
- "decoder_channels": 256,
37
- "decoder_atrous_rates": (20, 15, 6),
38
- "decoder_aspp_separable": True,
39
- "decoder_aspp_dropout": 0,
40
- "in_channels": 10,
41
- "classes": 9,
42
- "activation": None,
43
- "upsampling": 4,
44
- "aux_params": None,
45
- "global_pool": "avgmax",
46
- "drop_rate": 0.030244232449387346,
47
- "drop_path_rate": 0.43231510659674255,
48
- "zero_init_last": True,
49
- "block_args": {'attn_layer': 'eca'}
50
- }
51
- ```
52
-
53
- ## Model metrics
54
- ```json
55
- [
56
- "accuracy",
57
- "confusion_matrix",
58
- "f1",
59
- "mean_iou",
60
- "precision",
61
- "recall"
62
- ]
63
- ```
64
-
65
- ## Dataset
66
- Dataset name: [More Information Needed]
67
-
68
- ## More Information
69
- - Library: https://github.com/qubvel/segmentation_models.pytorch
70
- - Docs: https://smp.readthedocs.io/en/latest/
71
-
72
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: timm/resnet18d.ra2_in1k
3
+ base_model_relation: merge
4
  library_name: segmentation-models-pytorch
5
+ license: cc-by-4.0
6
+ metrics:
7
+ - accuracy
8
+ - confusion_matrix
9
+ - f1
10
+ - mean_iou
11
+ - precision
12
+ - recall
13
  pipeline_tag: image-segmentation
14
  tags:
15
+ - aerial-imagery
16
+ - lidar
17
+ - data-fusion
18
+ - roofing-materials
19
+ - roofing-material-classification
20
  - semantic-segmentation
 
 
 
21
  ---
22
+
23
+ # Model Card for RoofSense
24
+
25
+ <!-- Provide a quick summary of what the model is/does. -->
26
+
27
+ An encoder-decoder semantic segmentation model for multimodal roofing material classification.
28
+
29
+ ## Model Details
30
+
31
+ ### Model Description
32
+
33
+ <!-- Provide a longer summary of what this model is. -->
34
+
35
+ The model adopts an encoder-decoder architecture, pairing ResNet-18-D with DeepLabv3+.
36
+ Following hyperparameter optimisation, the encoder blocks were augmented with anti-aliasing and efficient channel attention modules.
37
+ In addition, the global average pooling blocks in the encoder were replaced with the mean of average and maximum pooling.
38
+ Furthermore, dilation rates of the atrous spatial pyramid pooling block of the decoder were set to $\left(20, 15, 6\right)$.
39
+ Finally, address any labelling errors and improve predicitions in small regions, the decorer output stride was set to sixteen.
40
+
41
+ - **Developed by:** Dimitris Mantas, Delft University of Technology, The Netherlands
42
+ - **Model type:** Fully Convolutional Neural Network
43
+ - **License:** Creative Commons Attribution 4.0 International
44
+ - **Base Model:** timm/resnet18d.ra2_in1k (Transfer Learning)
45
+
46
+ ### Model Sources
47
+
48
+ <!-- Provide the basic links for the model. -->
49
+
50
+ - **Repository:** https://github.com/DimitrisMantas/RoofSense
51
+ - **Resources:** https://repository.tudelft.nl/record/uuid:c463e920-61e6-40c5-89e9-25354fadf549
52
+
53
+ <!-- TODO -->
54
+ ## Uses
55
+
56
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
57
+
58
+ ### Direct Use
59
+
60
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
61
+
62
+ {{ direct_use | default("[More Information Needed]", true)}}
63
+
64
+ ### Downstream Use [optional]
65
+
66
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
67
+
68
+ {{ downstream_use | default("[More Information Needed]", true)}}
69
+
70
+ ### Out-of-Scope Use
71
+
72
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
73
+
74
+ {{ out_of_scope_use | default("[More Information Needed]", true)}}
75
+
76
+ ## Bias, Risks, and Limitations
77
+
78
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
79
+
80
+ {{ bias_risks_limitations | default("[More Information Needed]", true)}}
81
+
82
+ ### Recommendations
83
+
84
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
85
+
86
+ {{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}}
87
+
88
+ ## How to Get Started with the Model
89
+
90
+ Use the code below to get started with the model.
91
+
92
+ {{ get_started_code | default("[More Information Needed]", true)}}
93
+
94
+ ## Training Details
95
+
96
+ ### Training Data
97
+
98
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
99
+
100
+ {{ training_data | default("[More Information Needed]", true)}}
101
+
102
+ ### Training Procedure
103
+
104
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
105
+
106
+ #### Preprocessing [optional]
107
+
108
+ {{ preprocessing | default("[More Information Needed]", true)}}
109
+
110
+
111
+ #### Training Hyperparameters
112
+
113
+ - **Training regime:** {{ training_regime | default("[More Information Needed]", true)}} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
114
+
115
+ #### Speeds, Sizes, Times [optional]
116
+
117
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
118
+
119
+ {{ speeds_sizes_times | default("[More Information Needed]", true)}}
120
+
121
+ ## Evaluation
122
+
123
+ <!-- This section describes the evaluation protocols and provides the results. -->
124
+
125
+ ### Testing Data, Factors & Metrics
126
+
127
+ #### Testing Data
128
+
129
+ <!-- This should link to a Dataset Card if possible. -->
130
+
131
+ {{ testing_data | default("[More Information Needed]", true)}}
132
+
133
+ #### Factors
134
+
135
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
136
+
137
+ {{ testing_factors | default("[More Information Needed]", true)}}
138
+
139
+ #### Metrics
140
+
141
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
142
+
143
+ {{ testing_metrics | default("[More Information Needed]", true)}}
144
+
145
+ ### Results
146
+
147
+ {{ results | default("[More Information Needed]", true)}}
148
+
149
+ #### Summary
150
+
151
+ {{ results_summary | default("", true) }}
152
+
153
+ ## Model Examination [optional]
154
+
155
+ <!-- Relevant interpretability work for the model goes here -->
156
+
157
+ {{ model_examination | default("[More Information Needed]", true)}}
158
+
159
+ ## Environmental Impact
160
+
161
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
162
+
163
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
164
+
165
+ - **Hardware Type:** {{ hardware_type | default("[More Information Needed]", true)}}
166
+ - **Hours used:** {{ hours_used | default("[More Information Needed]", true)}}
167
+ - **Cloud Provider:** {{ cloud_provider | default("[More Information Needed]", true)}}
168
+ - **Compute Region:** {{ cloud_region | default("[More Information Needed]", true)}}
169
+ - **Carbon Emitted:** {{ co2_emitted | default("[More Information Needed]", true)}}
170
+
171
+ ## Technical Specifications [optional]
172
+
173
+ ### Model Architecture and Objective
174
+
175
+ {{ model_specs | default("[More Information Needed]", true)}}
176
+
177
+ ### Compute Infrastructure
178
+
179
+ {{ compute_infrastructure | default("[More Information Needed]", true)}}
180
+
181
+ #### Hardware
182
+
183
+ {{ hardware_requirements | default("[More Information Needed]", true)}}
184
+
185
+ #### Software
186
+
187
+ {{ software | default("[More Information Needed]", true)}}
188
+
189
+ ## Citation [optional]
190
+
191
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
192
+
193
+ **BibTeX:**
194
+
195
+ {{ citation_bibtex | default("[More Information Needed]", true)}}
196
+
197
+ **APA:**
198
+
199
+ {{ citation_apa | default("[More Information Needed]", true)}}
200
+
201
+ ## Glossary [optional]
202
+
203
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
204
+
205
+ {{ glossary | default("[More Information Needed]", true)}}
206
+
207
+ ## More Information [optional]
208
+
209
+ {{ more_information | default("[More Information Needed]", true)}}
210
+
211
+ ## Model Card Authors [optional]
212
+
213
+ {{ model_card_authors | default("[More Information Needed]", true)}}
214
+
215
+ ## Model Card Contact
216
+
217
+ {{ model_card_contact | default("[More Information Needed]", true)}}