lbourdois commited on
Commit
88131bc
·
verified ·
1 Parent(s): 09c5b7a

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +165 -151
README.md CHANGED
@@ -1,152 +1,166 @@
1
- ---
2
- library_name: peft
3
- license: other
4
- base_model: Qwen/Qwen2.5-3B-Instruct
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-3B-Instruct
23
- bf16: auto
24
- chat_template: llama3
25
- dataset_prepared_path: null
26
- datasets:
27
- - data_files:
28
- - 60a7588018415c1f_train_data.json
29
- ds_type: json
30
- format: custom
31
- path: /workspace/input_data/60a7588018415c1f_train_data.json
32
- type:
33
- field_instruction: prompt
34
- field_output: ground_truth_chosen
35
- format: '{instruction}'
36
- no_input_format: '{instruction}'
37
- system_format: '{system}'
38
- system_prompt: ''
39
- debug: null
40
- deepspeed: null
41
- early_stopping_patience: 1
42
- eval_max_new_tokens: 128
43
- eval_steps: 25
44
- eval_table_size: null
45
- flash_attention: false
46
- fp16: false
47
- fsdp: null
48
- fsdp_config: null
49
- gradient_accumulation_steps: 4
50
- gradient_checkpointing: true
51
- group_by_length: true
52
- hub_model_id: Dnsx077/9d122ead-3ae3-4958-85c8-6e51f0ea6d73
53
- hub_repo: null
54
- hub_strategy: checkpoint
55
- hub_token: null
56
- learning_rate: 0.0002
57
- load_in_4bit: false
58
- load_in_8bit: false
59
- local_rank: null
60
- logging_steps: 1
61
- lora_alpha: 32
62
- lora_dropout: 0.05
63
- lora_fan_in_fan_out: null
64
- lora_model_dir: null
65
- lora_r: 16
66
- lora_target_linear: true
67
- lr_scheduler: cosine
68
- max_memory:
69
- 0: 70GB
70
- max_steps: 50
71
- micro_batch_size: 2
72
- mlflow_experiment_name: /tmp/60a7588018415c1f_train_data.json
73
- model_type: AutoModelForCausalLM
74
- num_epochs: 3
75
- optimizer: adamw_torch
76
- output_dir: miner_id_24
77
- pad_to_sequence_len: true
78
- resume_from_checkpoint: null
79
- s2_attention: null
80
- sample_packing: false
81
- save_steps: 25
82
- sequence_len: 4056
83
- strict: false
84
- tf32: false
85
- tokenizer_type: AutoTokenizer
86
- train_on_inputs: false
87
- trust_remote_code: true
88
- val_set_size: 0.05
89
- wandb_entity: taoxminer-education
90
- wandb_mode: online
91
- wandb_name: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
92
- wandb_project: Gradients-On-Demand
93
- wandb_run: taoxminer
94
- wandb_runid: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
95
- warmup_ratio: 0.05
96
- weight_decay: 0.01
97
- xformers_attention: true
98
-
99
- ```
100
-
101
- </details><br>
102
-
103
- # 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
104
-
105
- This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset.
106
- It achieves the following results on the evaluation set:
107
- - Loss: 1.1243
108
-
109
- ## Model description
110
-
111
- More information needed
112
-
113
- ## Intended uses & limitations
114
-
115
- More information needed
116
-
117
- ## Training and evaluation data
118
-
119
- More information needed
120
-
121
- ## Training procedure
122
-
123
- ### Training hyperparameters
124
-
125
- The following hyperparameters were used during training:
126
- - learning_rate: 0.0002
127
- - train_batch_size: 2
128
- - eval_batch_size: 2
129
- - seed: 42
130
- - gradient_accumulation_steps: 4
131
- - total_train_batch_size: 8
132
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
133
- - lr_scheduler_type: cosine
134
- - lr_scheduler_warmup_steps: 2
135
- - training_steps: 50
136
-
137
- ### Training results
138
-
139
- | Training Loss | Epoch | Step | Validation Loss |
140
- |:-------------:|:------:|:----:|:---------------:|
141
- | 1.6172 | 0.0003 | 1 | 1.9064 |
142
- | 1.3437 | 0.0067 | 25 | 1.1470 |
143
- | 1.7072 | 0.0133 | 50 | 1.1243 |
144
-
145
-
146
- ### Framework versions
147
-
148
- - PEFT 0.13.2
149
- - Transformers 4.46.0
150
- - Pytorch 2.5.0+cu124
151
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-3B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-3B-Instruct
37
+ bf16: auto
38
+ chat_template: llama3
39
+ dataset_prepared_path: null
40
+ datasets:
41
+ - data_files:
42
+ - 60a7588018415c1f_train_data.json
43
+ ds_type: json
44
+ format: custom
45
+ path: /workspace/input_data/60a7588018415c1f_train_data.json
46
+ type:
47
+ field_instruction: prompt
48
+ field_output: ground_truth_chosen
49
+ format: '{instruction}'
50
+ no_input_format: '{instruction}'
51
+ system_format: '{system}'
52
+ system_prompt: ''
53
+ debug: null
54
+ deepspeed: null
55
+ early_stopping_patience: 1
56
+ eval_max_new_tokens: 128
57
+ eval_steps: 25
58
+ eval_table_size: null
59
+ flash_attention: false
60
+ fp16: false
61
+ fsdp: null
62
+ fsdp_config: null
63
+ gradient_accumulation_steps: 4
64
+ gradient_checkpointing: true
65
+ group_by_length: true
66
+ hub_model_id: Dnsx077/9d122ead-3ae3-4958-85c8-6e51f0ea6d73
67
+ hub_repo: null
68
+ hub_strategy: checkpoint
69
+ hub_token: null
70
+ learning_rate: 0.0002
71
+ load_in_4bit: false
72
+ load_in_8bit: false
73
+ local_rank: null
74
+ logging_steps: 1
75
+ lora_alpha: 32
76
+ lora_dropout: 0.05
77
+ lora_fan_in_fan_out: null
78
+ lora_model_dir: null
79
+ lora_r: 16
80
+ lora_target_linear: true
81
+ lr_scheduler: cosine
82
+ max_memory:
83
+ 0: 70GB
84
+ max_steps: 50
85
+ micro_batch_size: 2
86
+ mlflow_experiment_name: /tmp/60a7588018415c1f_train_data.json
87
+ model_type: AutoModelForCausalLM
88
+ num_epochs: 3
89
+ optimizer: adamw_torch
90
+ output_dir: miner_id_24
91
+ pad_to_sequence_len: true
92
+ resume_from_checkpoint: null
93
+ s2_attention: null
94
+ sample_packing: false
95
+ save_steps: 25
96
+ sequence_len: 4056
97
+ strict: false
98
+ tf32: false
99
+ tokenizer_type: AutoTokenizer
100
+ train_on_inputs: false
101
+ trust_remote_code: true
102
+ val_set_size: 0.05
103
+ wandb_entity: taoxminer-education
104
+ wandb_mode: online
105
+ wandb_name: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
106
+ wandb_project: Gradients-On-Demand
107
+ wandb_run: taoxminer
108
+ wandb_runid: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
109
+ warmup_ratio: 0.05
110
+ weight_decay: 0.01
111
+ xformers_attention: true
112
+
113
+ ```
114
+
115
+ </details><br>
116
+
117
+ # 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
118
+
119
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset.
120
+ It achieves the following results on the evaluation set:
121
+ - Loss: 1.1243
122
+
123
+ ## Model description
124
+
125
+ More information needed
126
+
127
+ ## Intended uses & limitations
128
+
129
+ More information needed
130
+
131
+ ## Training and evaluation data
132
+
133
+ More information needed
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 0.0002
141
+ - train_batch_size: 2
142
+ - eval_batch_size: 2
143
+ - seed: 42
144
+ - gradient_accumulation_steps: 4
145
+ - total_train_batch_size: 8
146
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 2
149
+ - training_steps: 50
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | 1.6172 | 0.0003 | 1 | 1.9064 |
156
+ | 1.3437 | 0.0067 | 25 | 1.1470 |
157
+ | 1.7072 | 0.0133 | 50 | 1.1243 |
158
+
159
+
160
+ ### Framework versions
161
+
162
+ - PEFT 0.13.2
163
+ - Transformers 4.46.0
164
+ - Pytorch 2.5.0+cu124
165
+ - Datasets 3.0.1
166
  - Tokenizers 0.20.1