Doctor-Shotgun commited on
Commit
5bdf789
·
verified ·
1 Parent(s): de75535

Training in progress, step 516, checkpoint

Browse files
Files changed (35) hide show
  1. checkpoint-516/README.md +202 -0
  2. checkpoint-516/adapter_config.json +40 -0
  3. checkpoint-516/adapter_model.safetensors +3 -0
  4. checkpoint-516/global_step516/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-516/global_step516/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-516/global_step516/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-516/global_step516/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-516/global_step516/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-516/global_step516/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-516/global_step516/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-516/global_step516/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-516/global_step516/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-516/global_step516/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-516/global_step516/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-516/global_step516/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-516/global_step516/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-516/global_step516/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-516/global_step516/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-516/global_step516/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-516/latest +1 -0
  21. checkpoint-516/rng_state_0.pth +3 -0
  22. checkpoint-516/rng_state_1.pth +3 -0
  23. checkpoint-516/rng_state_2.pth +3 -0
  24. checkpoint-516/rng_state_3.pth +3 -0
  25. checkpoint-516/rng_state_4.pth +3 -0
  26. checkpoint-516/rng_state_5.pth +3 -0
  27. checkpoint-516/rng_state_6.pth +3 -0
  28. checkpoint-516/rng_state_7.pth +3 -0
  29. checkpoint-516/scheduler.pt +3 -0
  30. checkpoint-516/special_tokens_map.json +23 -0
  31. checkpoint-516/tokenizer.json +3 -0
  32. checkpoint-516/tokenizer_config.json +2064 -0
  33. checkpoint-516/trainer_state.json +3645 -0
  34. checkpoint-516/training_args.bin +3 -0
  35. checkpoint-516/zero_to_fp32.py +760 -0
checkpoint-516/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-3.3-70B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-516/adapter_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-3.3-70B-Instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "embed_tokens",
22
+ "lm_head"
23
+ ],
24
+ "peft_type": "LORA",
25
+ "r": 128,
26
+ "rank_pattern": {},
27
+ "revision": null,
28
+ "target_modules": [
29
+ "v_proj",
30
+ "q_proj",
31
+ "down_proj",
32
+ "up_proj",
33
+ "gate_proj",
34
+ "o_proj",
35
+ "k_proj"
36
+ ],
37
+ "task_type": "CAUSAL_LM",
38
+ "use_dora": false,
39
+ "use_rslora": true
40
+ }
checkpoint-516/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:242cd7d4ecbb1bdf47f4883623ee96dd647fecb44b993c9912561247bfe83df7
3
+ size 7516349296
checkpoint-516/global_step516/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c7e345d2c5d974d34fa98615d6e85b019b9b6e5858d09167236883e5c0f58c0
3
+ size 3312262110
checkpoint-516/global_step516/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:174a2e3f72f6c156a039b712bdb6493a697d61372144c06a2de4aa60043a153b
3
+ size 3312262110
checkpoint-516/global_step516/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:001cbeaf906f90fad3d504aeb4edb20e5bf31ec4aed3e1ec72c6aae4d36864cb
3
+ size 3312262110
checkpoint-516/global_step516/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4dcdff49b64ffece6d8b620f3a96cfb37f01b7098e1361a6c04abc911991f5c
3
+ size 3312262110
checkpoint-516/global_step516/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6181bd19519ca7652b80e7e08d78ae0d201864d37f5c3e80345aeaa2d21fa573
3
+ size 3312262110
checkpoint-516/global_step516/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05539eea400c37e97898f774d17153b399562be4eda6daf0d48ca7fe81ffc4ff
3
+ size 3312262110
checkpoint-516/global_step516/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0da2bbf01d8f7765f74af616053e50a961c6cb10780b8c77d212ebaa65ca93d
3
+ size 3312262110
checkpoint-516/global_step516/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12615af29f415406e7fe7730d42a2300f0e730efb03a9a6705589a87c3891aa9
3
+ size 3312262110
checkpoint-516/global_step516/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61cac308b3ac84fdd0f9677d191c4bb83da257b4e34f76398333a3961676ba62
3
+ size 1114818
checkpoint-516/global_step516/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10b9702d54d9f0206de57882a49c7556ecd306edf81bb55fa21fc1af83f3eb68
3
+ size 1114818
checkpoint-516/global_step516/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:463cb4609cf54af210380856f54d92744a8b1389ff1feaeb6a692221f1c86842
3
+ size 1114818
checkpoint-516/global_step516/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edfaa630f9ed60a7d763c64cda07d8217aeb886594d71748a3126d98fc66d33f
3
+ size 1114818
checkpoint-516/global_step516/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:859b4695084e83eb7f73b40e63a58b9666345f3b4359bfbf6531bb254e9a3ec3
3
+ size 1114818
checkpoint-516/global_step516/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:199ff51791a7a598600f7c4dd8b11dac2a0eeb43738d69da8b181b7c578906e8
3
+ size 1114818
checkpoint-516/global_step516/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:357b1c03d8a2ddc1f7976dcba6489365a1fe5b2fe3859e833daa9dcdea21f92e
3
+ size 1114818
checkpoint-516/global_step516/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2ae3e1490c8fc95c85d9ea3a97f7ea5ec36712ffe11269f8a97dcacdd61e16d
3
+ size 1114818
checkpoint-516/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step516
checkpoint-516/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d65b2c2934bb52b1a2a49ea479e75cfb9b6545c1f0b41a7e5116b990b63a70fe
3
+ size 15984
checkpoint-516/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cf760ad8ce6d15e3af64673d4a3ffb59bea46954038c09e8a90ceabce576628
3
+ size 15984
checkpoint-516/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f8e69fff5ac28d75458e952d8e0816f50af25450d386c2a6da20a2c77210b5a
3
+ size 15984
checkpoint-516/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52f18a6db12dc7dea8fb9589b36e983b3de8e4035dfc1acf8feeea42c8a271d3
3
+ size 15984
checkpoint-516/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:829ef4cb7e6448cd09f973be9793de131d0412b20a902e94d88f5e95c3b6c509
3
+ size 15984
checkpoint-516/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e326cf3544ced1ef4148a25ece770da7954d9b6b02d55f41d333ebef078540d8
3
+ size 15984
checkpoint-516/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3d90f1457b3f2846e2835c82ccf2dc5be075e75d160ebe8ebf24b5f871c4736
3
+ size 15984
checkpoint-516/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10d741e2c9e7feddbf494acf5c78efc1ebc1848c8d3180bf194df7b150a6909e
3
+ size 15984
checkpoint-516/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8e2300a62ff8e16784d2b9e1a986b525f017b1fb7b4276207ba741dae02170d
3
+ size 1064
checkpoint-516/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-516/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
checkpoint-516/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
checkpoint-516/trainer_state.json ADDED
@@ -0,0 +1,3645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.5043731778425657,
5
+ "eval_steps": 500,
6
+ "global_step": 516,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0029154518950437317,
13
+ "grad_norm": 1.96997298809509,
14
+ "learning_rate": 1.0000000000000002e-06,
15
+ "loss": 1.4888,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0058309037900874635,
20
+ "grad_norm": 2.0593671952568466,
21
+ "learning_rate": 2.0000000000000003e-06,
22
+ "loss": 1.5633,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.008746355685131196,
27
+ "grad_norm": 2.0558980680243,
28
+ "learning_rate": 3e-06,
29
+ "loss": 1.4922,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.011661807580174927,
34
+ "grad_norm": 2.0407653033784907,
35
+ "learning_rate": 4.000000000000001e-06,
36
+ "loss": 1.5552,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.014577259475218658,
41
+ "grad_norm": 2.049565870762043,
42
+ "learning_rate": 5e-06,
43
+ "loss": 1.4963,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.01749271137026239,
48
+ "grad_norm": 1.8921551243504868,
49
+ "learning_rate": 6e-06,
50
+ "loss": 1.4756,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.02040816326530612,
55
+ "grad_norm": 1.9932142025756485,
56
+ "learning_rate": 7e-06,
57
+ "loss": 1.4733,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.023323615160349854,
62
+ "grad_norm": 1.8344452830038493,
63
+ "learning_rate": 8.000000000000001e-06,
64
+ "loss": 1.4998,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.026239067055393587,
69
+ "grad_norm": 3.1185523094664664,
70
+ "learning_rate": 9e-06,
71
+ "loss": 1.4562,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.029154518950437316,
76
+ "grad_norm": 1.3193772173204783,
77
+ "learning_rate": 1e-05,
78
+ "loss": 1.4078,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.03206997084548105,
83
+ "grad_norm": 1.4291215496905525,
84
+ "learning_rate": 1.1000000000000001e-05,
85
+ "loss": 1.3631,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.03498542274052478,
90
+ "grad_norm": 1.0345538651419202,
91
+ "learning_rate": 1.2e-05,
92
+ "loss": 1.2687,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.037900874635568516,
97
+ "grad_norm": 0.8509765803387165,
98
+ "learning_rate": 1.3000000000000001e-05,
99
+ "loss": 1.2788,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.04081632653061224,
104
+ "grad_norm": 0.7122306203690422,
105
+ "learning_rate": 1.4e-05,
106
+ "loss": 1.2479,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.043731778425655975,
111
+ "grad_norm": 0.6858784204503546,
112
+ "learning_rate": 1.5000000000000002e-05,
113
+ "loss": 1.312,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.04664723032069971,
118
+ "grad_norm": 0.8402421437953252,
119
+ "learning_rate": 1.6000000000000003e-05,
120
+ "loss": 1.2104,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.04956268221574344,
125
+ "grad_norm": 0.9216616450448899,
126
+ "learning_rate": 1.7e-05,
127
+ "loss": 1.2521,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.052478134110787174,
132
+ "grad_norm": 0.9921691551642605,
133
+ "learning_rate": 1.8e-05,
134
+ "loss": 1.2179,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.05539358600583091,
139
+ "grad_norm": 1.022423689479842,
140
+ "learning_rate": 1.9e-05,
141
+ "loss": 1.1792,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.05830903790087463,
146
+ "grad_norm": 1.0879189463724102,
147
+ "learning_rate": 2e-05,
148
+ "loss": 1.1985,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.061224489795918366,
153
+ "grad_norm": 1.0207736739226028,
154
+ "learning_rate": 2.1000000000000002e-05,
155
+ "loss": 1.2144,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.0641399416909621,
160
+ "grad_norm": 0.977515728831309,
161
+ "learning_rate": 2.2000000000000003e-05,
162
+ "loss": 1.2368,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.06705539358600583,
167
+ "grad_norm": 0.8388691896742322,
168
+ "learning_rate": 2.3e-05,
169
+ "loss": 1.1545,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.06997084548104957,
174
+ "grad_norm": 0.7188235107709924,
175
+ "learning_rate": 2.4e-05,
176
+ "loss": 1.2304,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.0728862973760933,
181
+ "grad_norm": 0.6257931373002115,
182
+ "learning_rate": 2.5e-05,
183
+ "loss": 1.1733,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.07580174927113703,
188
+ "grad_norm": 0.5237685387486158,
189
+ "learning_rate": 2.6000000000000002e-05,
190
+ "loss": 1.1693,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.07871720116618076,
195
+ "grad_norm": 0.5989713165204653,
196
+ "learning_rate": 2.7000000000000002e-05,
197
+ "loss": 1.2331,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.08163265306122448,
202
+ "grad_norm": 0.5869524805948223,
203
+ "learning_rate": 2.8e-05,
204
+ "loss": 1.2142,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.08454810495626822,
209
+ "grad_norm": 0.6720149885989607,
210
+ "learning_rate": 2.9e-05,
211
+ "loss": 1.1472,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.08746355685131195,
216
+ "grad_norm": 0.73864045163312,
217
+ "learning_rate": 3.0000000000000004e-05,
218
+ "loss": 1.1908,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.09037900874635568,
223
+ "grad_norm": 0.6759314678600088,
224
+ "learning_rate": 3.1e-05,
225
+ "loss": 1.1971,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.09329446064139942,
230
+ "grad_norm": 0.7251126641398837,
231
+ "learning_rate": 3.2000000000000005e-05,
232
+ "loss": 1.1809,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.09620991253644315,
237
+ "grad_norm": 0.6691450174305634,
238
+ "learning_rate": 3.3e-05,
239
+ "loss": 1.1753,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.09912536443148688,
244
+ "grad_norm": 0.5339684032344343,
245
+ "learning_rate": 3.4e-05,
246
+ "loss": 1.1597,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.10204081632653061,
251
+ "grad_norm": 0.4919690310909855,
252
+ "learning_rate": 3.5000000000000004e-05,
253
+ "loss": 1.1721,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.10495626822157435,
258
+ "grad_norm": 0.42018891979017214,
259
+ "learning_rate": 3.6e-05,
260
+ "loss": 1.1644,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.10787172011661808,
265
+ "grad_norm": 0.5490256316108622,
266
+ "learning_rate": 3.7000000000000005e-05,
267
+ "loss": 1.2463,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.11078717201166181,
272
+ "grad_norm": 0.5427250875445369,
273
+ "learning_rate": 3.8e-05,
274
+ "loss": 1.1137,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.11370262390670553,
279
+ "grad_norm": 0.5778225846177277,
280
+ "learning_rate": 3.9e-05,
281
+ "loss": 1.2072,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.11661807580174927,
286
+ "grad_norm": 0.693680585719681,
287
+ "learning_rate": 4e-05,
288
+ "loss": 1.1519,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.119533527696793,
293
+ "grad_norm": 0.6127902830311082,
294
+ "learning_rate": 3.999976349852511e-05,
295
+ "loss": 1.1104,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.12244897959183673,
300
+ "grad_norm": 0.6799487970334515,
301
+ "learning_rate": 3.999905399969373e-05,
302
+ "loss": 1.1175,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.12536443148688048,
307
+ "grad_norm": 0.5367363097182918,
308
+ "learning_rate": 3.999787152028561e-05,
309
+ "loss": 1.1483,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1282798833819242,
314
+ "grad_norm": 0.4524657560624909,
315
+ "learning_rate": 3.999621608826657e-05,
316
+ "loss": 1.138,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.13119533527696792,
321
+ "grad_norm": 0.41206360481350807,
322
+ "learning_rate": 3.999408774278781e-05,
323
+ "loss": 1.1245,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.13411078717201166,
328
+ "grad_norm": 0.47061852405012233,
329
+ "learning_rate": 3.999148653418503e-05,
330
+ "loss": 1.1603,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.13702623906705538,
335
+ "grad_norm": 0.5047699458420934,
336
+ "learning_rate": 3.998841252397718e-05,
337
+ "loss": 1.087,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.13994169096209913,
342
+ "grad_norm": 0.45543822046591975,
343
+ "learning_rate": 3.998486578486507e-05,
344
+ "loss": 1.1162,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.14285714285714285,
349
+ "grad_norm": 0.5145420477808398,
350
+ "learning_rate": 3.998084640072959e-05,
351
+ "loss": 1.1669,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.1457725947521866,
356
+ "grad_norm": 0.44889190383338007,
357
+ "learning_rate": 3.997635446662978e-05,
358
+ "loss": 1.0908,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.14868804664723032,
363
+ "grad_norm": 0.448875120724629,
364
+ "learning_rate": 3.997139008880053e-05,
365
+ "loss": 1.1508,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.15160349854227406,
370
+ "grad_norm": 0.4559094928660873,
371
+ "learning_rate": 3.996595338465012e-05,
372
+ "loss": 1.0421,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.15451895043731778,
377
+ "grad_norm": 0.41039500403883783,
378
+ "learning_rate": 3.9960044482757406e-05,
379
+ "loss": 1.0969,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.15743440233236153,
384
+ "grad_norm": 2.195181984076079,
385
+ "learning_rate": 3.995366352286878e-05,
386
+ "loss": 1.1174,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.16034985422740525,
391
+ "grad_norm": 0.45015457594488156,
392
+ "learning_rate": 3.994681065589489e-05,
393
+ "loss": 1.1393,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.16326530612244897,
398
+ "grad_norm": 0.41283257576743904,
399
+ "learning_rate": 3.993948604390704e-05,
400
+ "loss": 1.1162,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.1661807580174927,
405
+ "grad_norm": 0.469276947594031,
406
+ "learning_rate": 3.99316898601334e-05,
407
+ "loss": 1.1258,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.16909620991253643,
412
+ "grad_norm": 0.8079999817536038,
413
+ "learning_rate": 3.992342228895486e-05,
414
+ "loss": 1.127,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.17201166180758018,
419
+ "grad_norm": 0.4553362658754828,
420
+ "learning_rate": 3.991468352590069e-05,
421
+ "loss": 1.0919,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.1749271137026239,
426
+ "grad_norm": 0.4361094059704535,
427
+ "learning_rate": 3.990547377764394e-05,
428
+ "loss": 1.1087,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.17784256559766765,
433
+ "grad_norm": 0.41551312925162287,
434
+ "learning_rate": 3.9895793261996506e-05,
435
+ "loss": 1.101,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.18075801749271136,
440
+ "grad_norm": 0.3955618751805837,
441
+ "learning_rate": 3.9885642207904004e-05,
442
+ "loss": 1.0936,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.1836734693877551,
447
+ "grad_norm": 0.43720530414654624,
448
+ "learning_rate": 3.9875020855440374e-05,
449
+ "loss": 1.133,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.18658892128279883,
454
+ "grad_norm": 0.4347111246810371,
455
+ "learning_rate": 3.986392945580216e-05,
456
+ "loss": 1.1389,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.18950437317784258,
461
+ "grad_norm": 0.44850787138923726,
462
+ "learning_rate": 3.9852368271302604e-05,
463
+ "loss": 1.1137,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.1924198250728863,
468
+ "grad_norm": 0.38905578160555143,
469
+ "learning_rate": 3.984033757536542e-05,
470
+ "loss": 1.1007,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.19533527696793002,
475
+ "grad_norm": 0.4073765119693394,
476
+ "learning_rate": 3.982783765251834e-05,
477
+ "loss": 1.0624,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.19825072886297376,
482
+ "grad_norm": 0.4520768326268948,
483
+ "learning_rate": 3.981486879838639e-05,
484
+ "loss": 1.1307,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.20116618075801748,
489
+ "grad_norm": 0.4766094918337742,
490
+ "learning_rate": 3.980143131968488e-05,
491
+ "loss": 1.1057,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.20408163265306123,
496
+ "grad_norm": 0.3857556379543063,
497
+ "learning_rate": 3.978752553421216e-05,
498
+ "loss": 1.0811,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.20699708454810495,
503
+ "grad_norm": 0.4117513969256482,
504
+ "learning_rate": 3.977315177084211e-05,
505
+ "loss": 1.1368,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.2099125364431487,
510
+ "grad_norm": 0.4331294683046506,
511
+ "learning_rate": 3.975831036951635e-05,
512
+ "loss": 1.1067,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.21282798833819241,
517
+ "grad_norm": 0.4181099883703104,
518
+ "learning_rate": 3.974300168123622e-05,
519
+ "loss": 1.1078,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.21574344023323616,
524
+ "grad_norm": 0.5193623846316575,
525
+ "learning_rate": 3.972722606805445e-05,
526
+ "loss": 1.0217,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.21865889212827988,
531
+ "grad_norm": 0.42748682578145775,
532
+ "learning_rate": 3.9710983903066616e-05,
533
+ "loss": 1.1183,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.22157434402332363,
538
+ "grad_norm": 0.40340255468232195,
539
+ "learning_rate": 3.9694275570402316e-05,
540
+ "loss": 1.0175,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.22448979591836735,
545
+ "grad_norm": 0.6901116231810781,
546
+ "learning_rate": 3.9677101465216085e-05,
547
+ "loss": 1.1436,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.22740524781341107,
552
+ "grad_norm": 0.4470827057095483,
553
+ "learning_rate": 3.965946199367804e-05,
554
+ "loss": 1.1026,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.2303206997084548,
559
+ "grad_norm": 1.4507030226182656,
560
+ "learning_rate": 3.964135757296428e-05,
561
+ "loss": 1.0932,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.23323615160349853,
566
+ "grad_norm": 0.40183625780568555,
567
+ "learning_rate": 3.9622788631247045e-05,
568
+ "loss": 1.1108,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.23615160349854228,
573
+ "grad_norm": 0.4083797606486713,
574
+ "learning_rate": 3.960375560768452e-05,
575
+ "loss": 1.1263,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.239067055393586,
580
+ "grad_norm": 0.3982498098365359,
581
+ "learning_rate": 3.958425895241054e-05,
582
+ "loss": 1.1237,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.24198250728862974,
587
+ "grad_norm": 0.4059963555050571,
588
+ "learning_rate": 3.9564299126523867e-05,
589
+ "loss": 1.068,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.24489795918367346,
594
+ "grad_norm": 0.38793892556447224,
595
+ "learning_rate": 3.954387660207733e-05,
596
+ "loss": 1.1354,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.2478134110787172,
601
+ "grad_norm": 0.3941774269738573,
602
+ "learning_rate": 3.952299186206664e-05,
603
+ "loss": 1.0097,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.25072886297376096,
608
+ "grad_norm": 0.43220005658120336,
609
+ "learning_rate": 3.950164540041898e-05,
610
+ "loss": 1.0977,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.2536443148688047,
615
+ "grad_norm": 0.36583877050224667,
616
+ "learning_rate": 3.9479837721981315e-05,
617
+ "loss": 1.0613,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2565597667638484,
622
+ "grad_norm": 0.3968503378403748,
623
+ "learning_rate": 3.9457569342508474e-05,
624
+ "loss": 1.1081,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2594752186588921,
629
+ "grad_norm": 0.36657514937570074,
630
+ "learning_rate": 3.943484078865089e-05,
631
+ "loss": 1.0638,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.26239067055393583,
636
+ "grad_norm": 0.3990173761473332,
637
+ "learning_rate": 3.9411652597942224e-05,
638
+ "loss": 1.1051,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2653061224489796,
643
+ "grad_norm": 0.41741218758949744,
644
+ "learning_rate": 3.938800531878661e-05,
645
+ "loss": 1.0402,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.26822157434402333,
650
+ "grad_norm": 0.35100087055896617,
651
+ "learning_rate": 3.936389951044569e-05,
652
+ "loss": 1.036,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.27113702623906705,
657
+ "grad_norm": 0.3939910877708907,
658
+ "learning_rate": 3.933933574302538e-05,
659
+ "loss": 1.0915,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.27405247813411077,
664
+ "grad_norm": 0.48903634568290555,
665
+ "learning_rate": 3.93143145974624e-05,
666
+ "loss": 1.1166,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.27696793002915454,
671
+ "grad_norm": 0.47943406165195734,
672
+ "learning_rate": 3.928883666551054e-05,
673
+ "loss": 1.0421,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.27988338192419826,
678
+ "grad_norm": 0.4240913146011234,
679
+ "learning_rate": 3.926290254972665e-05,
680
+ "loss": 1.0877,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.282798833819242,
685
+ "grad_norm": 0.417735312873443,
686
+ "learning_rate": 3.923651286345638e-05,
687
+ "loss": 1.0495,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.2857142857142857,
692
+ "grad_norm": 0.4027791781208716,
693
+ "learning_rate": 3.920966823081972e-05,
694
+ "loss": 1.11,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.2886297376093295,
699
+ "grad_norm": 0.4021123805362925,
700
+ "learning_rate": 3.9182369286696185e-05,
701
+ "loss": 1.0656,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.2915451895043732,
706
+ "grad_norm": 0.41657372958369593,
707
+ "learning_rate": 3.915461667670982e-05,
708
+ "loss": 1.0953,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.2944606413994169,
713
+ "grad_norm": 0.4549189185164727,
714
+ "learning_rate": 3.9126411057213954e-05,
715
+ "loss": 1.0427,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.29737609329446063,
720
+ "grad_norm": 0.3909314378908402,
721
+ "learning_rate": 3.909775309527564e-05,
722
+ "loss": 1.0578,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.30029154518950435,
727
+ "grad_norm": 0.40901980161241175,
728
+ "learning_rate": 3.906864346865992e-05,
729
+ "loss": 1.0074,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.3032069970845481,
734
+ "grad_norm": 0.4009430285161083,
735
+ "learning_rate": 3.903908286581374e-05,
736
+ "loss": 1.0633,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.30612244897959184,
741
+ "grad_norm": 0.4413234724998126,
742
+ "learning_rate": 3.900907198584974e-05,
743
+ "loss": 1.0645,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.30903790087463556,
748
+ "grad_norm": 0.4146515624534,
749
+ "learning_rate": 3.8978611538529626e-05,
750
+ "loss": 1.0773,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.3119533527696793,
755
+ "grad_norm": 0.39991789210919104,
756
+ "learning_rate": 3.8947702244247485e-05,
757
+ "loss": 1.0766,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.31486880466472306,
762
+ "grad_norm": 0.4296757215583828,
763
+ "learning_rate": 3.8916344834012695e-05,
764
+ "loss": 1.0449,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.3177842565597668,
769
+ "grad_norm": 0.40497448422268767,
770
+ "learning_rate": 3.8884540049432626e-05,
771
+ "loss": 1.0504,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.3206997084548105,
776
+ "grad_norm": 0.42461898148240107,
777
+ "learning_rate": 3.885228864269511e-05,
778
+ "loss": 1.046,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3236151603498542,
783
+ "grad_norm": 0.388986879558302,
784
+ "learning_rate": 3.88195913765507e-05,
785
+ "loss": 1.0737,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.32653061224489793,
790
+ "grad_norm": 0.3941352715173726,
791
+ "learning_rate": 3.878644902429454e-05,
792
+ "loss": 1.0322,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3294460641399417,
797
+ "grad_norm": 0.42215837837057424,
798
+ "learning_rate": 3.875286236974816e-05,
799
+ "loss": 1.0645,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.3323615160349854,
804
+ "grad_norm": 0.4610458683962393,
805
+ "learning_rate": 3.871883220724089e-05,
806
+ "loss": 1.0884,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.33527696793002915,
811
+ "grad_norm": 0.4346091661281081,
812
+ "learning_rate": 3.868435934159109e-05,
813
+ "loss": 1.1111,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.33819241982507287,
818
+ "grad_norm": 0.37427705436326664,
819
+ "learning_rate": 3.864944458808712e-05,
820
+ "loss": 1.0629,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.34110787172011664,
825
+ "grad_norm": 0.4316114239509569,
826
+ "learning_rate": 3.8614088772468055e-05,
827
+ "loss": 1.0964,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.34402332361516036,
832
+ "grad_norm": 0.4597612055828575,
833
+ "learning_rate": 3.857829273090414e-05,
834
+ "loss": 1.0467,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.3469387755102041,
839
+ "grad_norm": 0.41631549856597405,
840
+ "learning_rate": 3.854205730997704e-05,
841
+ "loss": 1.0786,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.3498542274052478,
846
+ "grad_norm": 0.3829026297223422,
847
+ "learning_rate": 3.850538336665981e-05,
848
+ "loss": 1.045,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.35276967930029157,
853
+ "grad_norm": 0.4046975211753129,
854
+ "learning_rate": 3.846827176829662e-05,
855
+ "loss": 1.0549,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3556851311953353,
860
+ "grad_norm": 0.406694717694253,
861
+ "learning_rate": 3.843072339258223e-05,
862
+ "loss": 1.0579,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.358600583090379,
867
+ "grad_norm": 0.3868374046092744,
868
+ "learning_rate": 3.839273912754128e-05,
869
+ "loss": 1.0588,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.36151603498542273,
874
+ "grad_norm": 0.399700910407372,
875
+ "learning_rate": 3.8354319871507224e-05,
876
+ "loss": 1.0572,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.36443148688046645,
881
+ "grad_norm": 0.4404105487294615,
882
+ "learning_rate": 3.8315466533101154e-05,
883
+ "loss": 1.0646,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.3673469387755102,
888
+ "grad_norm": 0.38113631041534785,
889
+ "learning_rate": 3.827618003121023e-05,
890
+ "loss": 1.0137,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.37026239067055394,
895
+ "grad_norm": 0.4572696347195023,
896
+ "learning_rate": 3.823646129496604e-05,
897
+ "loss": 1.0825,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.37317784256559766,
902
+ "grad_norm": 0.44338604907070756,
903
+ "learning_rate": 3.8196311263722545e-05,
904
+ "loss": 1.0494,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.3760932944606414,
909
+ "grad_norm": 0.38848719927969894,
910
+ "learning_rate": 3.8155730887033895e-05,
911
+ "loss": 1.0524,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.37900874635568516,
916
+ "grad_norm": 0.7734150201362632,
917
+ "learning_rate": 3.8114721124631994e-05,
918
+ "loss": 0.996,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.3819241982507289,
923
+ "grad_norm": 0.4333233633929747,
924
+ "learning_rate": 3.8073282946403774e-05,
925
+ "loss": 1.0789,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.3848396501457726,
930
+ "grad_norm": 0.392992047366071,
931
+ "learning_rate": 3.803141733236826e-05,
932
+ "loss": 1.0326,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.3877551020408163,
937
+ "grad_norm": 0.48279560465143584,
938
+ "learning_rate": 3.798912527265339e-05,
939
+ "loss": 1.1128,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.39067055393586003,
944
+ "grad_norm": 0.4560757196728328,
945
+ "learning_rate": 3.794640776747262e-05,
946
+ "loss": 1.0439,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.3935860058309038,
951
+ "grad_norm": 0.4445942243776014,
952
+ "learning_rate": 3.790326582710125e-05,
953
+ "loss": 1.0763,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.3965014577259475,
958
+ "grad_norm": 0.4140118456428661,
959
+ "learning_rate": 3.785970047185253e-05,
960
+ "loss": 1.038,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.39941690962099125,
965
+ "grad_norm": 0.3965741184815775,
966
+ "learning_rate": 3.781571273205354e-05,
967
+ "loss": 1.0569,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.40233236151603496,
972
+ "grad_norm": 0.43946120665541893,
973
+ "learning_rate": 3.777130364802081e-05,
974
+ "loss": 1.0645,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.40524781341107874,
979
+ "grad_norm": 0.428032341240665,
980
+ "learning_rate": 3.772647427003573e-05,
981
+ "loss": 1.0923,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.40816326530612246,
986
+ "grad_norm": 0.4135938868702008,
987
+ "learning_rate": 3.76812256583197e-05,
988
+ "loss": 1.0019,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.4110787172011662,
993
+ "grad_norm": 0.42079943542215226,
994
+ "learning_rate": 3.763555888300906e-05,
995
+ "loss": 1.0245,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.4139941690962099,
1000
+ "grad_norm": 0.4104835573072325,
1001
+ "learning_rate": 3.758947502412978e-05,
1002
+ "loss": 1.0125,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.41690962099125367,
1007
+ "grad_norm": 0.4999660587761059,
1008
+ "learning_rate": 3.754297517157193e-05,
1009
+ "loss": 1.0287,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.4198250728862974,
1014
+ "grad_norm": 0.45879131535359835,
1015
+ "learning_rate": 3.749606042506387e-05,
1016
+ "loss": 0.9914,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.4227405247813411,
1021
+ "grad_norm": 0.4356982931966008,
1022
+ "learning_rate": 3.744873189414627e-05,
1023
+ "loss": 1.062,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.42565597667638483,
1028
+ "grad_norm": 0.39205637695442735,
1029
+ "learning_rate": 3.740099069814588e-05,
1030
+ "loss": 1.0553,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.42857142857142855,
1035
+ "grad_norm": 0.39862366256178505,
1036
+ "learning_rate": 3.735283796614903e-05,
1037
+ "loss": 1.0295,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.4314868804664723,
1042
+ "grad_norm": 0.4565309577821647,
1043
+ "learning_rate": 3.730427483697491e-05,
1044
+ "loss": 0.994,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.43440233236151604,
1049
+ "grad_norm": 0.37911610010778896,
1050
+ "learning_rate": 3.725530245914871e-05,
1051
+ "loss": 0.988,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.43731778425655976,
1056
+ "grad_norm": 0.38802243711360784,
1057
+ "learning_rate": 3.7205921990874375e-05,
1058
+ "loss": 1.0003,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4402332361516035,
1063
+ "grad_norm": 0.3779749391776368,
1064
+ "learning_rate": 3.715613460000727e-05,
1065
+ "loss": 1.0399,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.44314868804664725,
1070
+ "grad_norm": 0.3737638848515894,
1071
+ "learning_rate": 3.7105941464026535e-05,
1072
+ "loss": 0.9976,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.446064139941691,
1077
+ "grad_norm": 0.39445068206910416,
1078
+ "learning_rate": 3.705534377000723e-05,
1079
+ "loss": 1.0081,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4489795918367347,
1084
+ "grad_norm": 0.3970018541475319,
1085
+ "learning_rate": 3.700434271459229e-05,
1086
+ "loss": 1.0622,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.4518950437317784,
1091
+ "grad_norm": 0.41614934053800634,
1092
+ "learning_rate": 3.695293950396419e-05,
1093
+ "loss": 1.0184,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.45481049562682213,
1098
+ "grad_norm": 0.42879970357635455,
1099
+ "learning_rate": 3.6901135353816444e-05,
1100
+ "loss": 1.0692,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.4577259475218659,
1105
+ "grad_norm": 0.3956188265745643,
1106
+ "learning_rate": 3.684893148932484e-05,
1107
+ "loss": 1.0436,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.4606413994169096,
1112
+ "grad_norm": 0.351056787493942,
1113
+ "learning_rate": 3.679632914511849e-05,
1114
+ "loss": 1.0084,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.46355685131195334,
1119
+ "grad_norm": 0.42154821635414025,
1120
+ "learning_rate": 3.6743329565250575e-05,
1121
+ "loss": 0.965,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.46647230320699706,
1126
+ "grad_norm": 0.425347734771129,
1127
+ "learning_rate": 3.668993400316898e-05,
1128
+ "loss": 1.0146,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.46938775510204084,
1133
+ "grad_norm": 0.3719982532012811,
1134
+ "learning_rate": 3.663614372168663e-05,
1135
+ "loss": 1.0177,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.47230320699708456,
1140
+ "grad_norm": 0.4400972270054467,
1141
+ "learning_rate": 3.658195999295161e-05,
1142
+ "loss": 1.0366,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.4752186588921283,
1147
+ "grad_norm": 0.3605242363140329,
1148
+ "learning_rate": 3.65273840984171e-05,
1149
+ "loss": 1.0381,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.478134110787172,
1154
+ "grad_norm": 0.4066779201514536,
1155
+ "learning_rate": 3.647241732881104e-05,
1156
+ "loss": 0.9926,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.48104956268221577,
1161
+ "grad_norm": 0.38383029098926946,
1162
+ "learning_rate": 3.641706098410566e-05,
1163
+ "loss": 1.0053,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.4839650145772595,
1168
+ "grad_norm": 0.4540301261066676,
1169
+ "learning_rate": 3.6361316373486666e-05,
1170
+ "loss": 1.0027,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.4868804664723032,
1175
+ "grad_norm": 0.4766965097228693,
1176
+ "learning_rate": 3.630518481532232e-05,
1177
+ "loss": 1.0226,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.4897959183673469,
1182
+ "grad_norm": 0.3664211009679597,
1183
+ "learning_rate": 3.624866763713225e-05,
1184
+ "loss": 1.0028,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.49271137026239065,
1189
+ "grad_norm": 0.4328310790493932,
1190
+ "learning_rate": 3.619176617555606e-05,
1191
+ "loss": 1.1124,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.4956268221574344,
1196
+ "grad_norm": 0.5130318141830079,
1197
+ "learning_rate": 3.613448177632171e-05,
1198
+ "loss": 1.0168,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.49854227405247814,
1203
+ "grad_norm": 0.431130968592827,
1204
+ "learning_rate": 3.607681579421369e-05,
1205
+ "loss": 1.0359,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5014577259475219,
1210
+ "grad_norm": 0.38524112616777045,
1211
+ "learning_rate": 3.6018769593040973e-05,
1212
+ "loss": 1.0614,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5043731778425656,
1217
+ "grad_norm": 0.35453421271369107,
1218
+ "learning_rate": 3.5960344545604796e-05,
1219
+ "loss": 1.0441,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5072886297376094,
1224
+ "grad_norm": 0.41976737591927166,
1225
+ "learning_rate": 3.590154203366613e-05,
1226
+ "loss": 1.0446,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.5102040816326531,
1231
+ "grad_norm": 0.4259982924631218,
1232
+ "learning_rate": 3.584236344791306e-05,
1233
+ "loss": 1.0136,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5131195335276968,
1238
+ "grad_norm": 0.4149244827409494,
1239
+ "learning_rate": 3.578281018792788e-05,
1240
+ "loss": 1.0287,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.5160349854227405,
1245
+ "grad_norm": 0.4611231037315541,
1246
+ "learning_rate": 3.572288366215395e-05,
1247
+ "loss": 1.0915,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5189504373177842,
1252
+ "grad_norm": 0.41755776438019643,
1253
+ "learning_rate": 3.566258528786246e-05,
1254
+ "loss": 1.0648,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.521865889212828,
1259
+ "grad_norm": 0.3849110884427409,
1260
+ "learning_rate": 3.560191649111885e-05,
1261
+ "loss": 1.0319,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.5247813411078717,
1266
+ "grad_norm": 0.40902570967880714,
1267
+ "learning_rate": 3.554087870674911e-05,
1268
+ "loss": 1.0379,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.5276967930029155,
1273
+ "grad_norm": 0.3840959826247132,
1274
+ "learning_rate": 3.547947337830584e-05,
1275
+ "loss": 0.9727,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5306122448979592,
1280
+ "grad_norm": 0.5183637429811634,
1281
+ "learning_rate": 3.541770195803412e-05,
1282
+ "loss": 1.0227,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5335276967930029,
1287
+ "grad_norm": 0.4257410447947219,
1288
+ "learning_rate": 3.5355565906837155e-05,
1289
+ "loss": 0.9984,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5364431486880467,
1294
+ "grad_norm": 0.4384769899775353,
1295
+ "learning_rate": 3.5293066694241705e-05,
1296
+ "loss": 1.0336,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.5393586005830904,
1301
+ "grad_norm": 0.3758195750644803,
1302
+ "learning_rate": 3.523020579836338e-05,
1303
+ "loss": 1.0325,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5422740524781341,
1308
+ "grad_norm": 0.42491607255874136,
1309
+ "learning_rate": 3.5166984705871634e-05,
1310
+ "loss": 1.0012,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5451895043731778,
1315
+ "grad_norm": 0.4013799418461195,
1316
+ "learning_rate": 3.510340491195462e-05,
1317
+ "loss": 1.0595,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.5481049562682215,
1322
+ "grad_norm": 0.38755015550966654,
1323
+ "learning_rate": 3.5039467920283854e-05,
1324
+ "loss": 1.0258,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.5510204081632653,
1329
+ "grad_norm": 0.419454333619642,
1330
+ "learning_rate": 3.497517524297862e-05,
1331
+ "loss": 0.997,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.5539358600583091,
1336
+ "grad_norm": 0.4030099888296478,
1337
+ "learning_rate": 3.49105284005702e-05,
1338
+ "loss": 1.0641,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.5568513119533528,
1343
+ "grad_norm": 0.4308216911553141,
1344
+ "learning_rate": 3.4845528921965975e-05,
1345
+ "loss": 1.0773,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.5597667638483965,
1350
+ "grad_norm": 0.4109261330841367,
1351
+ "learning_rate": 3.478017834441319e-05,
1352
+ "loss": 1.0348,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.5626822157434402,
1357
+ "grad_norm": 0.4391746023600184,
1358
+ "learning_rate": 3.471447821346264e-05,
1359
+ "loss": 1.0143,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.565597667638484,
1364
+ "grad_norm": 0.4231633568942445,
1365
+ "learning_rate": 3.464843008293211e-05,
1366
+ "loss": 1.0658,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.5685131195335277,
1371
+ "grad_norm": 0.4185436344137551,
1372
+ "learning_rate": 3.458203551486964e-05,
1373
+ "loss": 1.0132,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.5714285714285714,
1378
+ "grad_norm": 0.3689812388040208,
1379
+ "learning_rate": 3.4515296079516547e-05,
1380
+ "loss": 0.9811,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.5743440233236151,
1385
+ "grad_norm": 0.38614461808327916,
1386
+ "learning_rate": 3.4448213355270327e-05,
1387
+ "loss": 1.0357,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.577259475218659,
1392
+ "grad_norm": 0.46524563397545066,
1393
+ "learning_rate": 3.43807889286473e-05,
1394
+ "loss": 1.0115,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.5801749271137027,
1399
+ "grad_norm": 0.41968912546661996,
1400
+ "learning_rate": 3.43130243942451e-05,
1401
+ "loss": 1.0687,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.5830903790087464,
1406
+ "grad_norm": 0.4467937397647347,
1407
+ "learning_rate": 3.424492135470496e-05,
1408
+ "loss": 1.0688,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.5860058309037901,
1413
+ "grad_norm": 0.6603485797707492,
1414
+ "learning_rate": 3.4176481420673806e-05,
1415
+ "loss": 1.0105,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.5889212827988338,
1420
+ "grad_norm": 0.47934564972994936,
1421
+ "learning_rate": 3.410770621076618e-05,
1422
+ "loss": 1.0196,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.5918367346938775,
1427
+ "grad_norm": 0.42028075345133814,
1428
+ "learning_rate": 3.403859735152593e-05,
1429
+ "loss": 1.0335,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.5947521865889213,
1434
+ "grad_norm": 0.41920419384521423,
1435
+ "learning_rate": 3.3969156477387775e-05,
1436
+ "loss": 1.0102,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.597667638483965,
1441
+ "grad_norm": 0.4314609472381487,
1442
+ "learning_rate": 3.389938523063864e-05,
1443
+ "loss": 1.026,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6005830903790087,
1448
+ "grad_norm": 0.400148137177815,
1449
+ "learning_rate": 3.382928526137878e-05,
1450
+ "loss": 1.0375,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6034985422740525,
1455
+ "grad_norm": 0.4149559442787825,
1456
+ "learning_rate": 3.375885822748282e-05,
1457
+ "loss": 0.9966,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6064139941690962,
1462
+ "grad_norm": 0.43073644415383394,
1463
+ "learning_rate": 3.36881057945605e-05,
1464
+ "loss": 1.0549,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.60932944606414,
1469
+ "grad_norm": 0.44927459389603297,
1470
+ "learning_rate": 3.361702963591729e-05,
1471
+ "loss": 1.0263,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.6122448979591837,
1476
+ "grad_norm": 0.3832872805795473,
1477
+ "learning_rate": 3.354563143251483e-05,
1478
+ "loss": 1.0359,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6151603498542274,
1483
+ "grad_norm": 0.3750674262349031,
1484
+ "learning_rate": 3.347391287293115e-05,
1485
+ "loss": 1.0246,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6180758017492711,
1490
+ "grad_norm": 0.4356003464009786,
1491
+ "learning_rate": 3.340187565332077e-05,
1492
+ "loss": 1.0415,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.6209912536443148,
1497
+ "grad_norm": 0.3832024635421635,
1498
+ "learning_rate": 3.332952147737456e-05,
1499
+ "loss": 0.9936,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6239067055393586,
1504
+ "grad_norm": 0.39631432623065777,
1505
+ "learning_rate": 3.325685205627944e-05,
1506
+ "loss": 1.0409,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.6268221574344023,
1511
+ "grad_norm": 0.4960530056723912,
1512
+ "learning_rate": 3.318386910867796e-05,
1513
+ "loss": 0.9819,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6297376093294461,
1518
+ "grad_norm": 0.48098440810607934,
1519
+ "learning_rate": 3.3110574360627574e-05,
1520
+ "loss": 1.0366,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.6326530612244898,
1525
+ "grad_norm": 0.40495158253103936,
1526
+ "learning_rate": 3.30369695455599e-05,
1527
+ "loss": 1.0169,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6355685131195336,
1532
+ "grad_norm": 0.4136840317080595,
1533
+ "learning_rate": 3.296305640423965e-05,
1534
+ "loss": 1.0089,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.6384839650145773,
1539
+ "grad_norm": 0.41071579187843577,
1540
+ "learning_rate": 3.288883668472353e-05,
1541
+ "loss": 1.0245,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.641399416909621,
1546
+ "grad_norm": 0.44228843130743967,
1547
+ "learning_rate": 3.2814312142318863e-05,
1548
+ "loss": 1.0143,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.6443148688046647,
1553
+ "grad_norm": 0.5009960405186326,
1554
+ "learning_rate": 3.273948453954205e-05,
1555
+ "loss": 1.0122,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.6472303206997084,
1560
+ "grad_norm": 0.5126441090651163,
1561
+ "learning_rate": 3.2664355646076944e-05,
1562
+ "loss": 0.989,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.6501457725947521,
1567
+ "grad_norm": 0.4071977138096943,
1568
+ "learning_rate": 3.2588927238732946e-05,
1569
+ "loss": 1.0441,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.6530612244897959,
1574
+ "grad_norm": 0.38486281815191886,
1575
+ "learning_rate": 3.2513201101403025e-05,
1576
+ "loss": 1.0152,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.6559766763848397,
1581
+ "grad_norm": 0.38571804075512084,
1582
+ "learning_rate": 3.24371790250215e-05,
1583
+ "loss": 1.0474,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.6588921282798834,
1588
+ "grad_norm": 0.35752894010390635,
1589
+ "learning_rate": 3.236086280752167e-05,
1590
+ "loss": 0.9813,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.6618075801749271,
1595
+ "grad_norm": 0.5079505809169615,
1596
+ "learning_rate": 3.2284254253793364e-05,
1597
+ "loss": 1.0358,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.6647230320699709,
1602
+ "grad_norm": 0.41139665258470137,
1603
+ "learning_rate": 3.220735517564015e-05,
1604
+ "loss": 1.0367,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.6676384839650146,
1609
+ "grad_norm": 0.38126553570378735,
1610
+ "learning_rate": 3.213016739173658e-05,
1611
+ "loss": 0.9482,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.6705539358600583,
1616
+ "grad_norm": 0.4144347872593754,
1617
+ "learning_rate": 3.205269272758513e-05,
1618
+ "loss": 1.0193,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.673469387755102,
1623
+ "grad_norm": 0.5096571232126209,
1624
+ "learning_rate": 3.197493301547302e-05,
1625
+ "loss": 0.9819,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.6763848396501457,
1630
+ "grad_norm": 0.36383462161136243,
1631
+ "learning_rate": 3.189689009442894e-05,
1632
+ "loss": 0.9914,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.6793002915451894,
1637
+ "grad_norm": 0.46095765518459053,
1638
+ "learning_rate": 3.181856581017946e-05,
1639
+ "loss": 0.9897,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.6822157434402333,
1644
+ "grad_norm": 0.44886312747350354,
1645
+ "learning_rate": 3.173996201510545e-05,
1646
+ "loss": 1.0335,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.685131195335277,
1651
+ "grad_norm": 0.45631056555707983,
1652
+ "learning_rate": 3.1661080568198266e-05,
1653
+ "loss": 1.0346,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.6880466472303207,
1658
+ "grad_norm": 0.4136610032658645,
1659
+ "learning_rate": 3.158192333501577e-05,
1660
+ "loss": 1.0104,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.6909620991253644,
1665
+ "grad_norm": 0.4367296982258636,
1666
+ "learning_rate": 3.150249218763818e-05,
1667
+ "loss": 1.0428,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.6938775510204082,
1672
+ "grad_norm": 0.4306434247011164,
1673
+ "learning_rate": 3.142278900462387e-05,
1674
+ "loss": 1.0455,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.6967930029154519,
1679
+ "grad_norm": 0.4253113476475862,
1680
+ "learning_rate": 3.134281567096485e-05,
1681
+ "loss": 1.0496,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.6997084548104956,
1686
+ "grad_norm": 0.48183974058742907,
1687
+ "learning_rate": 3.1262574078042285e-05,
1688
+ "loss": 1.0465,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7026239067055393,
1693
+ "grad_norm": 0.4119086984528717,
1694
+ "learning_rate": 3.1182066123581654e-05,
1695
+ "loss": 0.9854,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7055393586005831,
1700
+ "grad_norm": 0.341284639409196,
1701
+ "learning_rate": 3.110129371160797e-05,
1702
+ "loss": 0.9783,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7084548104956269,
1707
+ "grad_norm": 0.42056610876171097,
1708
+ "learning_rate": 3.102025875240068e-05,
1709
+ "loss": 1.0271,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.7113702623906706,
1714
+ "grad_norm": 0.4231983208975138,
1715
+ "learning_rate": 3.093896316244855e-05,
1716
+ "loss": 1.0432,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.7142857142857143,
1721
+ "grad_norm": 0.37689276896375645,
1722
+ "learning_rate": 3.085740886440422e-05,
1723
+ "loss": 0.9554,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.717201166180758,
1728
+ "grad_norm": 0.5479879616689535,
1729
+ "learning_rate": 3.077559778703891e-05,
1730
+ "loss": 0.9957,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7201166180758017,
1735
+ "grad_norm": 0.36933525591223165,
1736
+ "learning_rate": 3.069353186519665e-05,
1737
+ "loss": 0.9806,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7230320699708455,
1742
+ "grad_norm": 0.41541742087484357,
1743
+ "learning_rate": 3.06112130397486e-05,
1744
+ "loss": 1.0019,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7259475218658892,
1749
+ "grad_norm": 0.4030147243701519,
1750
+ "learning_rate": 3.052864325754712e-05,
1751
+ "loss": 0.9609,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.7288629737609329,
1756
+ "grad_norm": 0.38097239049076487,
1757
+ "learning_rate": 3.0445824471379735e-05,
1758
+ "loss": 0.9906,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.7317784256559767,
1763
+ "grad_norm": 0.35094313646523306,
1764
+ "learning_rate": 3.036275863992296e-05,
1765
+ "loss": 1.0152,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.7346938775510204,
1770
+ "grad_norm": 0.39936296801568144,
1771
+ "learning_rate": 3.0279447727695955e-05,
1772
+ "loss": 1.0211,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.7376093294460642,
1777
+ "grad_norm": 0.3910974776654842,
1778
+ "learning_rate": 3.0195893705014085e-05,
1779
+ "loss": 1.0504,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.7405247813411079,
1784
+ "grad_norm": 0.43816416675730724,
1785
+ "learning_rate": 3.01120985479423e-05,
1786
+ "loss": 1.0076,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.7434402332361516,
1791
+ "grad_norm": 0.36698284475827536,
1792
+ "learning_rate": 3.002806423824843e-05,
1793
+ "loss": 0.9635,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.7463556851311953,
1798
+ "grad_norm": 0.39228423379591765,
1799
+ "learning_rate": 2.9943792763356305e-05,
1800
+ "loss": 0.9619,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.749271137026239,
1805
+ "grad_norm": 0.36070109767376196,
1806
+ "learning_rate": 2.9859286116298714e-05,
1807
+ "loss": 0.9851,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.7521865889212828,
1812
+ "grad_norm": 0.37912953951949635,
1813
+ "learning_rate": 2.977454629567034e-05,
1814
+ "loss": 0.9898,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.7551020408163265,
1819
+ "grad_norm": 0.37387389967325224,
1820
+ "learning_rate": 2.968957530558043e-05,
1821
+ "loss": 0.9977,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.7580174927113703,
1826
+ "grad_norm": 0.39972986361258667,
1827
+ "learning_rate": 2.960437515560544e-05,
1828
+ "loss": 0.9856,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.760932944606414,
1833
+ "grad_norm": 0.3826342975930071,
1834
+ "learning_rate": 2.9518947860741476e-05,
1835
+ "loss": 0.9588,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.7638483965014577,
1840
+ "grad_norm": 0.3576332727935384,
1841
+ "learning_rate": 2.943329544135666e-05,
1842
+ "loss": 0.9893,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.7667638483965015,
1847
+ "grad_norm": 0.464371743364152,
1848
+ "learning_rate": 2.9347419923143355e-05,
1849
+ "loss": 1.0135,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.7696793002915452,
1854
+ "grad_norm": 0.4133741281825162,
1855
+ "learning_rate": 2.9261323337070212e-05,
1856
+ "loss": 0.9489,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.7725947521865889,
1861
+ "grad_norm": 0.48836679547916445,
1862
+ "learning_rate": 2.9175007719334213e-05,
1863
+ "loss": 0.9644,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.7755102040816326,
1868
+ "grad_norm": 0.3887248594130963,
1869
+ "learning_rate": 2.9088475111312434e-05,
1870
+ "loss": 0.9809,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.7784256559766763,
1875
+ "grad_norm": 0.3918471548750329,
1876
+ "learning_rate": 2.900172755951382e-05,
1877
+ "loss": 0.9602,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.7813411078717201,
1882
+ "grad_norm": 0.4366666865657208,
1883
+ "learning_rate": 2.891476711553077e-05,
1884
+ "loss": 1.0474,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.7842565597667639,
1889
+ "grad_norm": 0.38108127915752593,
1890
+ "learning_rate": 2.88275958359906e-05,
1891
+ "loss": 0.9794,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.7871720116618076,
1896
+ "grad_norm": 0.3996038721397645,
1897
+ "learning_rate": 2.8740215782506937e-05,
1898
+ "loss": 1.0089,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.7900874635568513,
1903
+ "grad_norm": 0.4000788473276949,
1904
+ "learning_rate": 2.8652629021630928e-05,
1905
+ "loss": 0.9935,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.793002915451895,
1910
+ "grad_norm": 0.4311799335652256,
1911
+ "learning_rate": 2.8564837624802394e-05,
1912
+ "loss": 1.0085,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.7959183673469388,
1917
+ "grad_norm": 0.43802025453013554,
1918
+ "learning_rate": 2.8476843668300805e-05,
1919
+ "loss": 0.9818,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.7988338192419825,
1924
+ "grad_norm": 0.39878597038821745,
1925
+ "learning_rate": 2.838864923319622e-05,
1926
+ "loss": 1.031,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.8017492711370262,
1931
+ "grad_norm": 0.38849018574168676,
1932
+ "learning_rate": 2.830025640530004e-05,
1933
+ "loss": 0.9949,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.8046647230320699,
1938
+ "grad_norm": 0.3700883289439985,
1939
+ "learning_rate": 2.821166727511567e-05,
1940
+ "loss": 0.9896,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.8075801749271136,
1945
+ "grad_norm": 0.3722364712124695,
1946
+ "learning_rate": 2.8122883937789117e-05,
1947
+ "loss": 0.9941,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8104956268221575,
1952
+ "grad_norm": 0.4096031852809965,
1953
+ "learning_rate": 2.8033908493059394e-05,
1954
+ "loss": 1.0378,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8134110787172012,
1959
+ "grad_norm": 0.37372263404365025,
1960
+ "learning_rate": 2.7944743045208897e-05,
1961
+ "loss": 1.0253,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.8163265306122449,
1966
+ "grad_norm": 0.38881406149093034,
1967
+ "learning_rate": 2.785538970301361e-05,
1968
+ "loss": 0.9663,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8192419825072886,
1973
+ "grad_norm": 0.42459440488854533,
1974
+ "learning_rate": 2.7765850579693274e-05,
1975
+ "loss": 1.0034,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.8221574344023324,
1980
+ "grad_norm": 0.4143201974978241,
1981
+ "learning_rate": 2.767612779286134e-05,
1982
+ "loss": 1.0368,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.8250728862973761,
1987
+ "grad_norm": 0.38362731189430754,
1988
+ "learning_rate": 2.758622346447496e-05,
1989
+ "loss": 1.0208,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.8279883381924198,
1994
+ "grad_norm": 0.41169832196779926,
1995
+ "learning_rate": 2.7496139720784763e-05,
1996
+ "loss": 1.0006,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.8309037900874635,
2001
+ "grad_norm": 0.34751593366178846,
2002
+ "learning_rate": 2.7405878692284572e-05,
2003
+ "loss": 1.0251,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.8338192419825073,
2008
+ "grad_norm": 0.4058210036935123,
2009
+ "learning_rate": 2.7315442513661014e-05,
2010
+ "loss": 1.0361,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.8367346938775511,
2015
+ "grad_norm": 0.4401679580816322,
2016
+ "learning_rate": 2.7224833323743064e-05,
2017
+ "loss": 1.0272,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.8396501457725948,
2022
+ "grad_norm": 0.4057761916028717,
2023
+ "learning_rate": 2.713405326545142e-05,
2024
+ "loss": 1.0383,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.8425655976676385,
2029
+ "grad_norm": 0.4245290759312782,
2030
+ "learning_rate": 2.7043104485747852e-05,
2031
+ "loss": 1.0464,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.8454810495626822,
2036
+ "grad_norm": 0.4038361202180251,
2037
+ "learning_rate": 2.6951989135584417e-05,
2038
+ "loss": 0.988,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.8483965014577259,
2043
+ "grad_norm": 0.36810376807434014,
2044
+ "learning_rate": 2.686070936985258e-05,
2045
+ "loss": 0.9561,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.8513119533527697,
2050
+ "grad_norm": 0.37195307131485894,
2051
+ "learning_rate": 2.6769267347332265e-05,
2052
+ "loss": 0.9575,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.8542274052478134,
2057
+ "grad_norm": 0.390443868115284,
2058
+ "learning_rate": 2.6677665230640798e-05,
2059
+ "loss": 0.9699,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.8571428571428571,
2064
+ "grad_norm": 0.4042815574880434,
2065
+ "learning_rate": 2.6585905186181738e-05,
2066
+ "loss": 1.042,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.8600583090379009,
2071
+ "grad_norm": 0.3959869863268726,
2072
+ "learning_rate": 2.6493989384093674e-05,
2073
+ "loss": 0.9752,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.8629737609329446,
2078
+ "grad_norm": 0.3618071430236251,
2079
+ "learning_rate": 2.6401919998198883e-05,
2080
+ "loss": 1.0231,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.8658892128279884,
2085
+ "grad_norm": 0.4176948830244882,
2086
+ "learning_rate": 2.630969920595192e-05,
2087
+ "loss": 0.9362,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.8688046647230321,
2092
+ "grad_norm": 0.3791793063855236,
2093
+ "learning_rate": 2.6217329188388127e-05,
2094
+ "loss": 0.999,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.8717201166180758,
2099
+ "grad_norm": 0.37050615706622725,
2100
+ "learning_rate": 2.612481213007204e-05,
2101
+ "loss": 0.9698,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.8746355685131195,
2106
+ "grad_norm": 0.4262982030520383,
2107
+ "learning_rate": 2.603215021904573e-05,
2108
+ "loss": 1.0253,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.8775510204081632,
2113
+ "grad_norm": 0.4100689842059256,
2114
+ "learning_rate": 2.5939345646777066e-05,
2115
+ "loss": 1.0282,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.880466472303207,
2120
+ "grad_norm": 0.42174481372887873,
2121
+ "learning_rate": 2.5846400608107864e-05,
2122
+ "loss": 0.9907,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.8833819241982507,
2127
+ "grad_norm": 0.4314163530656172,
2128
+ "learning_rate": 2.5753317301201998e-05,
2129
+ "loss": 1.0558,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.8862973760932945,
2134
+ "grad_norm": 0.4010560503450353,
2135
+ "learning_rate": 2.5660097927493407e-05,
2136
+ "loss": 0.9557,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.8892128279883382,
2141
+ "grad_norm": 0.4395765405207931,
2142
+ "learning_rate": 2.5566744691634027e-05,
2143
+ "loss": 1.0059,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.892128279883382,
2148
+ "grad_norm": 0.4082847256609399,
2149
+ "learning_rate": 2.5473259801441663e-05,
2150
+ "loss": 1.0103,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.8950437317784257,
2155
+ "grad_norm": 0.4083786483549625,
2156
+ "learning_rate": 2.537964546784774e-05,
2157
+ "loss": 0.986,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.8979591836734694,
2162
+ "grad_norm": 0.37572180654125914,
2163
+ "learning_rate": 2.5285903904845066e-05,
2164
+ "loss": 0.9896,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.9008746355685131,
2169
+ "grad_norm": 0.4027132060553977,
2170
+ "learning_rate": 2.5192037329435426e-05,
2171
+ "loss": 0.979,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.9037900874635568,
2176
+ "grad_norm": 0.36888494424117924,
2177
+ "learning_rate": 2.5098047961577177e-05,
2178
+ "loss": 0.9471,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9067055393586005,
2183
+ "grad_norm": 0.3786111360905341,
2184
+ "learning_rate": 2.500393802413273e-05,
2185
+ "loss": 0.9892,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9096209912536443,
2190
+ "grad_norm": 0.45712819166253305,
2191
+ "learning_rate": 2.4909709742815986e-05,
2192
+ "loss": 1.01,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.9125364431486881,
2197
+ "grad_norm": 0.3842470085901606,
2198
+ "learning_rate": 2.4815365346139696e-05,
2199
+ "loss": 0.9778,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.9154518950437318,
2204
+ "grad_norm": 0.433547968789441,
2205
+ "learning_rate": 2.4720907065362752e-05,
2206
+ "loss": 1.0222,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.9183673469387755,
2211
+ "grad_norm": 0.4391573887982836,
2212
+ "learning_rate": 2.4626337134437437e-05,
2213
+ "loss": 1.0405,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.9212827988338192,
2218
+ "grad_norm": 0.39208976407075724,
2219
+ "learning_rate": 2.4531657789956547e-05,
2220
+ "loss": 1.0437,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.924198250728863,
2225
+ "grad_norm": 0.3768972618887708,
2226
+ "learning_rate": 2.4436871271100556e-05,
2227
+ "loss": 1.0207,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.9271137026239067,
2232
+ "grad_norm": 0.43610556057213695,
2233
+ "learning_rate": 2.4341979819584625e-05,
2234
+ "loss": 0.9861,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.9300291545189504,
2239
+ "grad_norm": 0.363583976831923,
2240
+ "learning_rate": 2.4246985679605554e-05,
2241
+ "loss": 0.9383,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.9329446064139941,
2246
+ "grad_norm": 0.37854946885829915,
2247
+ "learning_rate": 2.4151891097788775e-05,
2248
+ "loss": 1.0158,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.9358600583090378,
2253
+ "grad_norm": 0.37464026411645185,
2254
+ "learning_rate": 2.4056698323135176e-05,
2255
+ "loss": 0.9712,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.9387755102040817,
2260
+ "grad_norm": 0.43100644059903814,
2261
+ "learning_rate": 2.3961409606967925e-05,
2262
+ "loss": 1.0003,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.9416909620991254,
2267
+ "grad_norm": 0.38980347880232474,
2268
+ "learning_rate": 2.3866027202879192e-05,
2269
+ "loss": 0.914,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.9446064139941691,
2274
+ "grad_norm": 0.48554638696145264,
2275
+ "learning_rate": 2.377055336667692e-05,
2276
+ "loss": 0.9585,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.9475218658892128,
2281
+ "grad_norm": 0.36898646954208214,
2282
+ "learning_rate": 2.367499035633141e-05,
2283
+ "loss": 0.9835,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.9504373177842566,
2288
+ "grad_norm": 0.4297200560129973,
2289
+ "learning_rate": 2.357934043192195e-05,
2290
+ "loss": 0.9952,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.9533527696793003,
2295
+ "grad_norm": 0.39165249508490607,
2296
+ "learning_rate": 2.3483605855583362e-05,
2297
+ "loss": 0.9882,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.956268221574344,
2302
+ "grad_norm": 0.41742394941388217,
2303
+ "learning_rate": 2.338778889145249e-05,
2304
+ "loss": 0.9717,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.9591836734693877,
2309
+ "grad_norm": 0.3886638817329252,
2310
+ "learning_rate": 2.329189180561468e-05,
2311
+ "loss": 0.9663,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.9620991253644315,
2316
+ "grad_norm": 0.4332990337620019,
2317
+ "learning_rate": 2.3195916866050144e-05,
2318
+ "loss": 0.9852,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.9650145772594753,
2323
+ "grad_norm": 0.3704146023415907,
2324
+ "learning_rate": 2.3099866342580367e-05,
2325
+ "loss": 0.9486,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.967930029154519,
2330
+ "grad_norm": 0.4371661371336054,
2331
+ "learning_rate": 2.300374250681439e-05,
2332
+ "loss": 0.9657,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.9708454810495627,
2337
+ "grad_norm": 0.4303408791719072,
2338
+ "learning_rate": 2.2907547632095107e-05,
2339
+ "loss": 1.0448,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.9737609329446064,
2344
+ "grad_norm": 0.3768181576852921,
2345
+ "learning_rate": 2.2811283993445496e-05,
2346
+ "loss": 0.9616,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.9766763848396501,
2351
+ "grad_norm": 0.3724772962800981,
2352
+ "learning_rate": 2.2714953867514797e-05,
2353
+ "loss": 1.0466,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.9795918367346939,
2358
+ "grad_norm": 0.363005384837364,
2359
+ "learning_rate": 2.261855953252471e-05,
2360
+ "loss": 0.9818,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.9825072886297376,
2365
+ "grad_norm": 0.41490379204887295,
2366
+ "learning_rate": 2.252210326821547e-05,
2367
+ "loss": 1.0075,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.9854227405247813,
2372
+ "grad_norm": 0.41297107841340125,
2373
+ "learning_rate": 2.2425587355791953e-05,
2374
+ "loss": 1.0264,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.9883381924198251,
2379
+ "grad_norm": 0.4120966355909792,
2380
+ "learning_rate": 2.232901407786973e-05,
2381
+ "loss": 1.0295,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.9912536443148688,
2386
+ "grad_norm": 0.4061162831072794,
2387
+ "learning_rate": 2.2232385718421053e-05,
2388
+ "loss": 0.9504,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.9941690962099126,
2393
+ "grad_norm": 0.3885457702367736,
2394
+ "learning_rate": 2.2135704562720887e-05,
2395
+ "loss": 0.9139,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.9970845481049563,
2400
+ "grad_norm": 0.43463625174294523,
2401
+ "learning_rate": 2.2038972897292813e-05,
2402
+ "loss": 0.9913,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 1.0,
2407
+ "grad_norm": 0.3538735883267368,
2408
+ "learning_rate": 2.1942193009854997e-05,
2409
+ "loss": 1.0211,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 1.0029154518950438,
2414
+ "grad_norm": 0.3388449241745017,
2415
+ "learning_rate": 2.184536718926604e-05,
2416
+ "loss": 0.9067,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 1.0058309037900874,
2421
+ "grad_norm": 0.3958357821808929,
2422
+ "learning_rate": 2.174849772547089e-05,
2423
+ "loss": 0.9061,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 1.0087463556851313,
2428
+ "grad_norm": 0.41616322205845646,
2429
+ "learning_rate": 2.165158690944665e-05,
2430
+ "loss": 0.9362,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 1.0116618075801749,
2435
+ "grad_norm": 0.35202048574980316,
2436
+ "learning_rate": 2.155463703314841e-05,
2437
+ "loss": 0.8766,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 1.0145772594752187,
2442
+ "grad_norm": 0.34310062245683337,
2443
+ "learning_rate": 2.145765038945504e-05,
2444
+ "loss": 0.8642,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 1.0174927113702623,
2449
+ "grad_norm": 0.3981059330195169,
2450
+ "learning_rate": 2.136062927211497e-05,
2451
+ "loss": 0.8645,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 1.0204081632653061,
2456
+ "grad_norm": 0.3672358171644383,
2457
+ "learning_rate": 2.1263575975691942e-05,
2458
+ "loss": 0.9306,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 1.0233236151603498,
2463
+ "grad_norm": 0.3973336252454919,
2464
+ "learning_rate": 2.116649279551072e-05,
2465
+ "loss": 0.929,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 1.0262390670553936,
2470
+ "grad_norm": 0.3369031433982456,
2471
+ "learning_rate": 2.106938202760284e-05,
2472
+ "loss": 0.8762,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 1.0291545189504374,
2477
+ "grad_norm": 0.4117171514208426,
2478
+ "learning_rate": 2.097224596865229e-05,
2479
+ "loss": 0.8893,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 1.032069970845481,
2484
+ "grad_norm": 0.35518871719324885,
2485
+ "learning_rate": 2.0875086915941183e-05,
2486
+ "loss": 0.8674,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 1.0349854227405249,
2491
+ "grad_norm": 0.3890457229678617,
2492
+ "learning_rate": 2.077790716729545e-05,
2493
+ "loss": 0.9484,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 1.0379008746355685,
2498
+ "grad_norm": 0.39711639935921345,
2499
+ "learning_rate": 2.068070902103047e-05,
2500
+ "loss": 0.9082,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 1.0408163265306123,
2505
+ "grad_norm": 0.371896748401522,
2506
+ "learning_rate": 2.0583494775896753e-05,
2507
+ "loss": 0.9356,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 1.043731778425656,
2512
+ "grad_norm": 0.3487320833120989,
2513
+ "learning_rate": 2.048626673102552e-05,
2514
+ "loss": 0.8607,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 1.0466472303206997,
2519
+ "grad_norm": 0.41218299978568584,
2520
+ "learning_rate": 2.0389027185874392e-05,
2521
+ "loss": 0.8836,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 1.0495626822157433,
2526
+ "grad_norm": 0.37291671079144145,
2527
+ "learning_rate": 2.029177844017293e-05,
2528
+ "loss": 0.8612,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 1.0524781341107872,
2533
+ "grad_norm": 0.4195454108396945,
2534
+ "learning_rate": 2.0194522793868323e-05,
2535
+ "loss": 0.9009,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 1.055393586005831,
2540
+ "grad_norm": 0.3896114588981958,
2541
+ "learning_rate": 2.009726254707095e-05,
2542
+ "loss": 0.919,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 1.0583090379008746,
2547
+ "grad_norm": 0.36497741633912156,
2548
+ "learning_rate": 2e-05,
2549
+ "loss": 0.9151,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 1.0612244897959184,
2554
+ "grad_norm": 0.35583146774397306,
2555
+ "learning_rate": 1.9902737452929052e-05,
2556
+ "loss": 0.8999,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 1.064139941690962,
2561
+ "grad_norm": 0.3456016725198812,
2562
+ "learning_rate": 1.9805477206131677e-05,
2563
+ "loss": 0.8859,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 1.0670553935860059,
2568
+ "grad_norm": 0.5966960662679052,
2569
+ "learning_rate": 1.9708221559827073e-05,
2570
+ "loss": 0.9015,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 1.0699708454810495,
2575
+ "grad_norm": 0.3671094566365045,
2576
+ "learning_rate": 1.9610972814125618e-05,
2577
+ "loss": 0.9176,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 1.0728862973760933,
2582
+ "grad_norm": 0.4390906706069723,
2583
+ "learning_rate": 1.9513733268974485e-05,
2584
+ "loss": 0.9444,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 1.075801749271137,
2589
+ "grad_norm": 0.34661948587313707,
2590
+ "learning_rate": 1.941650522410325e-05,
2591
+ "loss": 0.8723,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 1.0787172011661808,
2596
+ "grad_norm": 0.39816272068553876,
2597
+ "learning_rate": 1.9319290978969532e-05,
2598
+ "loss": 0.9432,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 1.0816326530612246,
2603
+ "grad_norm": 0.3484825048580216,
2604
+ "learning_rate": 1.9222092832704556e-05,
2605
+ "loss": 0.9161,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 1.0845481049562682,
2610
+ "grad_norm": 0.36769340343082263,
2611
+ "learning_rate": 1.9124913084058817e-05,
2612
+ "loss": 0.8537,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 1.087463556851312,
2617
+ "grad_norm": 0.647745516060205,
2618
+ "learning_rate": 1.9027754031347715e-05,
2619
+ "loss": 0.9043,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 1.0903790087463556,
2624
+ "grad_norm": 0.39468021998569647,
2625
+ "learning_rate": 1.8930617972397162e-05,
2626
+ "loss": 0.9155,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 1.0932944606413995,
2631
+ "grad_norm": 0.5047238810446275,
2632
+ "learning_rate": 1.8833507204489286e-05,
2633
+ "loss": 0.9116,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 1.096209912536443,
2638
+ "grad_norm": 0.38578546256744967,
2639
+ "learning_rate": 1.873642402430806e-05,
2640
+ "loss": 0.9446,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 1.099125364431487,
2645
+ "grad_norm": 0.37853911957080766,
2646
+ "learning_rate": 1.8639370727885032e-05,
2647
+ "loss": 0.9033,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 1.1020408163265305,
2652
+ "grad_norm": 0.39191145713635545,
2653
+ "learning_rate": 1.8542349610544965e-05,
2654
+ "loss": 0.8971,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 1.1049562682215743,
2659
+ "grad_norm": 0.42552186647920914,
2660
+ "learning_rate": 1.8445362966851603e-05,
2661
+ "loss": 0.9197,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 1.1078717201166182,
2666
+ "grad_norm": 0.39878496811419945,
2667
+ "learning_rate": 1.8348413090553356e-05,
2668
+ "loss": 0.8382,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 1.1107871720116618,
2673
+ "grad_norm": 0.3532504119440214,
2674
+ "learning_rate": 1.8251502274529113e-05,
2675
+ "loss": 0.8854,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 1.1137026239067056,
2680
+ "grad_norm": 0.3794396182708985,
2681
+ "learning_rate": 1.815463281073396e-05,
2682
+ "loss": 0.9256,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 1.1166180758017492,
2687
+ "grad_norm": 0.3690962462197968,
2688
+ "learning_rate": 1.8057806990145006e-05,
2689
+ "loss": 0.9126,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 1.119533527696793,
2694
+ "grad_norm": 0.33118238380078774,
2695
+ "learning_rate": 1.796102710270719e-05,
2696
+ "loss": 0.8978,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 1.1224489795918366,
2701
+ "grad_norm": 0.4017437985742156,
2702
+ "learning_rate": 1.7864295437279123e-05,
2703
+ "loss": 0.9122,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 1.1253644314868805,
2708
+ "grad_norm": 0.3374384561910696,
2709
+ "learning_rate": 1.7767614281578957e-05,
2710
+ "loss": 0.8897,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 1.128279883381924,
2715
+ "grad_norm": 0.38242886488399963,
2716
+ "learning_rate": 1.7670985922130278e-05,
2717
+ "loss": 0.8855,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 1.131195335276968,
2722
+ "grad_norm": 0.3118608652607213,
2723
+ "learning_rate": 1.757441264420805e-05,
2724
+ "loss": 0.8872,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 1.1341107871720117,
2729
+ "grad_norm": 0.38385193075347296,
2730
+ "learning_rate": 1.7477896731784533e-05,
2731
+ "loss": 0.9566,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 1.1370262390670554,
2736
+ "grad_norm": 0.320934960093107,
2737
+ "learning_rate": 1.738144046747529e-05,
2738
+ "loss": 0.842,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 1.1399416909620992,
2743
+ "grad_norm": 0.39934131018687274,
2744
+ "learning_rate": 1.7285046132485213e-05,
2745
+ "loss": 0.8921,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 1.1428571428571428,
2750
+ "grad_norm": 0.501779773738352,
2751
+ "learning_rate": 1.7188716006554514e-05,
2752
+ "loss": 0.8642,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 1.1457725947521866,
2757
+ "grad_norm": 0.3830686077134007,
2758
+ "learning_rate": 1.7092452367904903e-05,
2759
+ "loss": 0.8758,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 1.1486880466472302,
2764
+ "grad_norm": 0.5008440591261429,
2765
+ "learning_rate": 1.6996257493185612e-05,
2766
+ "loss": 0.9021,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 1.151603498542274,
2771
+ "grad_norm": 0.4511494170269456,
2772
+ "learning_rate": 1.6900133657419636e-05,
2773
+ "loss": 0.8622,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 1.1545189504373177,
2778
+ "grad_norm": 0.2984119660617534,
2779
+ "learning_rate": 1.680408313394986e-05,
2780
+ "loss": 0.8524,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 1.1574344023323615,
2785
+ "grad_norm": 0.3812683259088031,
2786
+ "learning_rate": 1.670810819438532e-05,
2787
+ "loss": 0.9313,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 1.1603498542274053,
2792
+ "grad_norm": 0.37166040845388637,
2793
+ "learning_rate": 1.6612211108547516e-05,
2794
+ "loss": 0.8665,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 1.163265306122449,
2799
+ "grad_norm": 0.351603148836399,
2800
+ "learning_rate": 1.6516394144416644e-05,
2801
+ "loss": 0.8902,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 1.1661807580174928,
2806
+ "grad_norm": 0.610085385951358,
2807
+ "learning_rate": 1.6420659568078057e-05,
2808
+ "loss": 0.8881,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 1.1690962099125364,
2813
+ "grad_norm": 0.3874546159794478,
2814
+ "learning_rate": 1.6325009643668592e-05,
2815
+ "loss": 0.8647,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 1.1720116618075802,
2820
+ "grad_norm": 0.38491777769529806,
2821
+ "learning_rate": 1.6229446633323082e-05,
2822
+ "loss": 0.8673,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 1.1749271137026238,
2827
+ "grad_norm": 0.48051830259266204,
2828
+ "learning_rate": 1.613397279712081e-05,
2829
+ "loss": 0.9143,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 1.1778425655976676,
2834
+ "grad_norm": 0.7099012144404129,
2835
+ "learning_rate": 1.603859039303209e-05,
2836
+ "loss": 0.9074,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 1.1807580174927113,
2841
+ "grad_norm": 0.32314820225527935,
2842
+ "learning_rate": 1.5943301676864827e-05,
2843
+ "loss": 0.8979,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 1.183673469387755,
2848
+ "grad_norm": 0.5871998008882374,
2849
+ "learning_rate": 1.5848108902211228e-05,
2850
+ "loss": 0.8903,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 1.186588921282799,
2855
+ "grad_norm": 0.3369401972398898,
2856
+ "learning_rate": 1.5753014320394452e-05,
2857
+ "loss": 0.8972,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 1.1895043731778425,
2862
+ "grad_norm": 0.3531724159844245,
2863
+ "learning_rate": 1.565802018041538e-05,
2864
+ "loss": 0.8644,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 1.1924198250728864,
2869
+ "grad_norm": 0.9398965424727117,
2870
+ "learning_rate": 1.556312872889944e-05,
2871
+ "loss": 0.9311,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 1.19533527696793,
2876
+ "grad_norm": 0.3689024843304816,
2877
+ "learning_rate": 1.546834221004346e-05,
2878
+ "loss": 0.9241,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 1.1982507288629738,
2883
+ "grad_norm": 0.43093464215869326,
2884
+ "learning_rate": 1.5373662865562577e-05,
2885
+ "loss": 0.8911,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 1.2011661807580174,
2890
+ "grad_norm": 0.4465894257328085,
2891
+ "learning_rate": 1.5279092934637258e-05,
2892
+ "loss": 0.8496,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 1.2040816326530612,
2897
+ "grad_norm": 0.34210040207353676,
2898
+ "learning_rate": 1.5184634653860309e-05,
2899
+ "loss": 0.8606,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 1.2069970845481048,
2904
+ "grad_norm": 0.41093683620818694,
2905
+ "learning_rate": 1.5090290257184019e-05,
2906
+ "loss": 0.8848,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 1.2099125364431487,
2911
+ "grad_norm": 0.35185182480819926,
2912
+ "learning_rate": 1.499606197586727e-05,
2913
+ "loss": 0.9152,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 1.2128279883381925,
2918
+ "grad_norm": 0.38820257625897675,
2919
+ "learning_rate": 1.4901952038422832e-05,
2920
+ "loss": 0.8928,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 1.215743440233236,
2925
+ "grad_norm": 0.371973353051329,
2926
+ "learning_rate": 1.480796267056458e-05,
2927
+ "loss": 0.8885,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 1.21865889212828,
2932
+ "grad_norm": 0.4007535912082386,
2933
+ "learning_rate": 1.4714096095154942e-05,
2934
+ "loss": 0.867,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 1.2215743440233235,
2939
+ "grad_norm": 0.3690054663984619,
2940
+ "learning_rate": 1.4620354532152268e-05,
2941
+ "loss": 0.889,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 1.2244897959183674,
2946
+ "grad_norm": 0.37463553204342753,
2947
+ "learning_rate": 1.4526740198558345e-05,
2948
+ "loss": 0.8706,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 1.227405247813411,
2953
+ "grad_norm": 0.4952730464254449,
2954
+ "learning_rate": 1.4433255308365973e-05,
2955
+ "loss": 0.8401,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 1.2303206997084548,
2960
+ "grad_norm": 0.345766761417753,
2961
+ "learning_rate": 1.4339902072506591e-05,
2962
+ "loss": 0.8835,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 1.2332361516034984,
2967
+ "grad_norm": 1.463217273899525,
2968
+ "learning_rate": 1.4246682698798012e-05,
2969
+ "loss": 0.8907,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 1.2361516034985423,
2974
+ "grad_norm": 0.39821570357245056,
2975
+ "learning_rate": 1.4153599391892143e-05,
2976
+ "loss": 0.9214,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 1.239067055393586,
2981
+ "grad_norm": 0.3433998600071002,
2982
+ "learning_rate": 1.4060654353222942e-05,
2983
+ "loss": 0.8962,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 1.2419825072886297,
2988
+ "grad_norm": 0.4000515497205946,
2989
+ "learning_rate": 1.3967849780954277e-05,
2990
+ "loss": 0.9037,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 1.2448979591836735,
2995
+ "grad_norm": 0.9571521264143225,
2996
+ "learning_rate": 1.3875187869927965e-05,
2997
+ "loss": 0.91,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 1.2478134110787171,
3002
+ "grad_norm": 0.3733616626840636,
3003
+ "learning_rate": 1.3782670811611875e-05,
3004
+ "loss": 0.8817,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 1.250728862973761,
3009
+ "grad_norm": 0.3642809314159708,
3010
+ "learning_rate": 1.3690300794048085e-05,
3011
+ "loss": 0.8813,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 1.2536443148688048,
3016
+ "grad_norm": 0.3647741657803098,
3017
+ "learning_rate": 1.3598080001801126e-05,
3018
+ "loss": 0.9274,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 1.2565597667638484,
3023
+ "grad_norm": 0.3458677417744315,
3024
+ "learning_rate": 1.3506010615906333e-05,
3025
+ "loss": 0.9027,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 1.259475218658892,
3030
+ "grad_norm": 0.34251500677540714,
3031
+ "learning_rate": 1.341409481381827e-05,
3032
+ "loss": 0.8474,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 1.2623906705539358,
3037
+ "grad_norm": 0.3190350803534079,
3038
+ "learning_rate": 1.332233476935921e-05,
3039
+ "loss": 0.8459,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 1.2653061224489797,
3044
+ "grad_norm": 0.3265461354474515,
3045
+ "learning_rate": 1.3230732652667735e-05,
3046
+ "loss": 0.8689,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 1.2682215743440233,
3051
+ "grad_norm": 0.3267958005137338,
3052
+ "learning_rate": 1.3139290630147426e-05,
3053
+ "loss": 0.8875,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 1.271137026239067,
3058
+ "grad_norm": 0.38778316009874764,
3059
+ "learning_rate": 1.304801086441559e-05,
3060
+ "loss": 0.8932,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 1.2740524781341107,
3065
+ "grad_norm": 0.3410085655324801,
3066
+ "learning_rate": 1.2956895514252155e-05,
3067
+ "loss": 0.9059,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 1.2769679300291545,
3072
+ "grad_norm": 0.41937944828658263,
3073
+ "learning_rate": 1.2865946734548584e-05,
3074
+ "loss": 0.9002,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 1.2798833819241984,
3079
+ "grad_norm": 0.38182491793130874,
3080
+ "learning_rate": 1.2775166676256942e-05,
3081
+ "loss": 0.9464,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 1.282798833819242,
3086
+ "grad_norm": 0.36240327212282164,
3087
+ "learning_rate": 1.2684557486338991e-05,
3088
+ "loss": 0.9037,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 1.2857142857142856,
3093
+ "grad_norm": 0.38163895310199947,
3094
+ "learning_rate": 1.2594121307715441e-05,
3095
+ "loss": 0.8961,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 1.2886297376093294,
3100
+ "grad_norm": 0.4177515236060373,
3101
+ "learning_rate": 1.2503860279215242e-05,
3102
+ "loss": 0.8718,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 1.2915451895043732,
3107
+ "grad_norm": 0.3414559830348138,
3108
+ "learning_rate": 1.2413776535525043e-05,
3109
+ "loss": 0.8944,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 1.2944606413994169,
3114
+ "grad_norm": 0.3444285556032968,
3115
+ "learning_rate": 1.2323872207138666e-05,
3116
+ "loss": 0.8882,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 1.2973760932944607,
3121
+ "grad_norm": 0.3481275643120278,
3122
+ "learning_rate": 1.2234149420306731e-05,
3123
+ "loss": 0.8574,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 1.3002915451895043,
3128
+ "grad_norm": 0.39334877331174234,
3129
+ "learning_rate": 1.214461029698639e-05,
3130
+ "loss": 0.9041,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 1.3032069970845481,
3135
+ "grad_norm": 0.45396505769468926,
3136
+ "learning_rate": 1.2055256954791114e-05,
3137
+ "loss": 0.8161,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 1.306122448979592,
3142
+ "grad_norm": 0.33669105009228384,
3143
+ "learning_rate": 1.1966091506940616e-05,
3144
+ "loss": 0.8329,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 1.3090379008746356,
3149
+ "grad_norm": 0.404159242739437,
3150
+ "learning_rate": 1.1877116062210891e-05,
3151
+ "loss": 0.8878,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 1.3119533527696792,
3156
+ "grad_norm": 0.36088083861016024,
3157
+ "learning_rate": 1.1788332724884335e-05,
3158
+ "loss": 0.8706,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 1.314868804664723,
3163
+ "grad_norm": 0.36792996117202054,
3164
+ "learning_rate": 1.1699743594699969e-05,
3165
+ "loss": 0.8936,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 1.3177842565597668,
3170
+ "grad_norm": 0.349538085141998,
3171
+ "learning_rate": 1.1611350766803779e-05,
3172
+ "loss": 0.9015,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 1.3206997084548104,
3177
+ "grad_norm": 0.334875040431663,
3178
+ "learning_rate": 1.1523156331699193e-05,
3179
+ "loss": 0.8756,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 1.3236151603498543,
3184
+ "grad_norm": 0.3531907780008996,
3185
+ "learning_rate": 1.143516237519762e-05,
3186
+ "loss": 0.8658,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 1.3265306122448979,
3191
+ "grad_norm": 0.362184223903246,
3192
+ "learning_rate": 1.1347370978369079e-05,
3193
+ "loss": 0.9037,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 1.3294460641399417,
3198
+ "grad_norm": 0.3587468921176296,
3199
+ "learning_rate": 1.1259784217493066e-05,
3200
+ "loss": 0.8701,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 1.3323615160349855,
3205
+ "grad_norm": 0.3298772264662029,
3206
+ "learning_rate": 1.1172404164009407e-05,
3207
+ "loss": 0.8736,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 1.3352769679300291,
3212
+ "grad_norm": 0.3815272524154801,
3213
+ "learning_rate": 1.1085232884469236e-05,
3214
+ "loss": 0.879,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 1.3381924198250728,
3219
+ "grad_norm": 0.36822484912081677,
3220
+ "learning_rate": 1.099827244048618e-05,
3221
+ "loss": 0.9244,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 1.3411078717201166,
3226
+ "grad_norm": 0.36072841946566814,
3227
+ "learning_rate": 1.091152488868757e-05,
3228
+ "loss": 0.8999,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 1.3440233236151604,
3233
+ "grad_norm": 0.33888396618261474,
3234
+ "learning_rate": 1.0824992280665795e-05,
3235
+ "loss": 0.8572,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 1.346938775510204,
3240
+ "grad_norm": 0.3901819048276413,
3241
+ "learning_rate": 1.073867666292979e-05,
3242
+ "loss": 0.9347,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 1.3498542274052479,
3247
+ "grad_norm": 0.40223314649198144,
3248
+ "learning_rate": 1.0652580076856651e-05,
3249
+ "loss": 0.9083,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 1.3527696793002915,
3254
+ "grad_norm": 0.3491884382940672,
3255
+ "learning_rate": 1.0566704558643346e-05,
3256
+ "loss": 0.8786,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 1.3556851311953353,
3261
+ "grad_norm": 0.4415544695353861,
3262
+ "learning_rate": 1.048105213925853e-05,
3263
+ "loss": 0.8776,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 1.3586005830903791,
3268
+ "grad_norm": 0.3453075343303145,
3269
+ "learning_rate": 1.0395624844394572e-05,
3270
+ "loss": 0.9093,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 1.3615160349854227,
3275
+ "grad_norm": 0.340399019623445,
3276
+ "learning_rate": 1.0310424694419577e-05,
3277
+ "loss": 0.8847,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 1.3644314868804663,
3282
+ "grad_norm": 0.35072478611605545,
3283
+ "learning_rate": 1.0225453704329672e-05,
3284
+ "loss": 0.8676,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 1.3673469387755102,
3289
+ "grad_norm": 0.366685868167488,
3290
+ "learning_rate": 1.0140713883701291e-05,
3291
+ "loss": 0.9,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 1.370262390670554,
3296
+ "grad_norm": 0.3970701863890074,
3297
+ "learning_rate": 1.0056207236643702e-05,
3298
+ "loss": 0.9122,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 1.3731778425655976,
3303
+ "grad_norm": 0.37213823009472397,
3304
+ "learning_rate": 9.971935761751574e-06,
3305
+ "loss": 0.8945,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 1.3760932944606414,
3310
+ "grad_norm": 0.3454352920544214,
3311
+ "learning_rate": 9.887901452057713e-06,
3312
+ "loss": 0.8981,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 1.379008746355685,
3317
+ "grad_norm": 0.360228295000985,
3318
+ "learning_rate": 9.804106294985929e-06,
3319
+ "loss": 0.8879,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 1.3819241982507289,
3324
+ "grad_norm": 0.42020731308194914,
3325
+ "learning_rate": 9.720552272304052e-06,
3326
+ "loss": 0.9226,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 1.3848396501457727,
3331
+ "grad_norm": 0.3412811092807568,
3332
+ "learning_rate": 9.63724136007705e-06,
3333
+ "loss": 0.8304,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 1.3877551020408163,
3338
+ "grad_norm": 0.3872889292215835,
3339
+ "learning_rate": 9.554175528620268e-06,
3340
+ "loss": 0.9462,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 1.39067055393586,
3345
+ "grad_norm": 0.34781062699895504,
3346
+ "learning_rate": 9.471356742452881e-06,
3347
+ "loss": 0.8765,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 1.3935860058309038,
3352
+ "grad_norm": 0.3483345892307839,
3353
+ "learning_rate": 9.388786960251405e-06,
3354
+ "loss": 0.8475,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 1.3965014577259476,
3359
+ "grad_norm": 0.3790773367687499,
3360
+ "learning_rate": 9.30646813480336e-06,
3361
+ "loss": 0.9009,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 1.3994169096209912,
3366
+ "grad_norm": 0.4205998029964938,
3367
+ "learning_rate": 9.224402212961096e-06,
3368
+ "loss": 0.8873,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 1.402332361516035,
3373
+ "grad_norm": 0.36628713096418625,
3374
+ "learning_rate": 9.142591135595782e-06,
3375
+ "loss": 0.9311,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 1.4052478134110786,
3380
+ "grad_norm": 0.3435864317922267,
3381
+ "learning_rate": 9.061036837551467e-06,
3382
+ "loss": 0.8952,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 1.4081632653061225,
3387
+ "grad_norm": 0.377356721465227,
3388
+ "learning_rate": 8.979741247599316e-06,
3389
+ "loss": 0.9334,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 1.4110787172011663,
3394
+ "grad_norm": 0.36256826670709436,
3395
+ "learning_rate": 8.89870628839203e-06,
3396
+ "loss": 0.9042,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 1.41399416909621,
3401
+ "grad_norm": 0.3531404440716723,
3402
+ "learning_rate": 8.817933876418349e-06,
3403
+ "loss": 0.8659,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 1.4169096209912537,
3408
+ "grad_norm": 0.4187534028031517,
3409
+ "learning_rate": 8.737425921957726e-06,
3410
+ "loss": 0.8303,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 1.4198250728862973,
3415
+ "grad_norm": 0.3691883637551743,
3416
+ "learning_rate": 8.657184329035151e-06,
3417
+ "loss": 0.9052,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 1.4227405247813412,
3422
+ "grad_norm": 0.38858873680533296,
3423
+ "learning_rate": 8.577210995376135e-06,
3424
+ "loss": 0.8786,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 1.4256559766763848,
3429
+ "grad_norm": 0.36643937908368496,
3430
+ "learning_rate": 8.497507812361826e-06,
3431
+ "loss": 0.9161,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 1.4285714285714286,
3436
+ "grad_norm": 0.3823114752504239,
3437
+ "learning_rate": 8.418076664984236e-06,
3438
+ "loss": 0.8946,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 1.4314868804664722,
3443
+ "grad_norm": 0.35170467761018115,
3444
+ "learning_rate": 8.338919431801738e-06,
3445
+ "loss": 0.8571,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 1.434402332361516,
3450
+ "grad_norm": 0.3701359423395854,
3451
+ "learning_rate": 8.260037984894553e-06,
3452
+ "loss": 0.8641,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 1.4373177842565599,
3457
+ "grad_norm": 0.3665017275322417,
3458
+ "learning_rate": 8.181434189820552e-06,
3459
+ "loss": 0.8873,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 1.4402332361516035,
3464
+ "grad_norm": 0.3582809415312125,
3465
+ "learning_rate": 8.103109905571062e-06,
3466
+ "loss": 0.9288,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 1.4431486880466473,
3471
+ "grad_norm": 0.31631298202014885,
3472
+ "learning_rate": 8.02506698452697e-06,
3473
+ "loss": 0.825,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 1.446064139941691,
3478
+ "grad_norm": 0.3534409758588844,
3479
+ "learning_rate": 7.947307272414874e-06,
3480
+ "loss": 0.9054,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 1.4489795918367347,
3485
+ "grad_norm": 0.3598528867752392,
3486
+ "learning_rate": 7.869832608263427e-06,
3487
+ "loss": 0.8922,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 1.4518950437317784,
3492
+ "grad_norm": 0.3684455264389801,
3493
+ "learning_rate": 7.792644824359858e-06,
3494
+ "loss": 0.8585,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 1.4548104956268222,
3499
+ "grad_norm": 0.38121906726183624,
3500
+ "learning_rate": 7.715745746206644e-06,
3501
+ "loss": 0.8459,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 1.4577259475218658,
3506
+ "grad_norm": 0.3638442962640907,
3507
+ "learning_rate": 7.639137192478334e-06,
3508
+ "loss": 0.8539,
3509
+ "step": 500
3510
+ },
3511
+ {
3512
+ "epoch": 1.4606413994169096,
3513
+ "grad_norm": 0.40163215440287875,
3514
+ "learning_rate": 7.5628209749785084e-06,
3515
+ "loss": 0.8732,
3516
+ "step": 501
3517
+ },
3518
+ {
3519
+ "epoch": 1.4635568513119535,
3520
+ "grad_norm": 0.34533156621538597,
3521
+ "learning_rate": 7.486798898596976e-06,
3522
+ "loss": 0.8811,
3523
+ "step": 502
3524
+ },
3525
+ {
3526
+ "epoch": 1.466472303206997,
3527
+ "grad_norm": 0.43990397905816536,
3528
+ "learning_rate": 7.4110727612670575e-06,
3529
+ "loss": 0.8852,
3530
+ "step": 503
3531
+ },
3532
+ {
3533
+ "epoch": 1.469387755102041,
3534
+ "grad_norm": 0.5289781287921499,
3535
+ "learning_rate": 7.3356443539230685e-06,
3536
+ "loss": 0.8236,
3537
+ "step": 504
3538
+ },
3539
+ {
3540
+ "epoch": 1.4723032069970845,
3541
+ "grad_norm": 0.3328540341889078,
3542
+ "learning_rate": 7.260515460457958e-06,
3543
+ "loss": 0.8851,
3544
+ "step": 505
3545
+ },
3546
+ {
3547
+ "epoch": 1.4752186588921283,
3548
+ "grad_norm": 0.4870383351032914,
3549
+ "learning_rate": 7.185687857681141e-06,
3550
+ "loss": 0.9001,
3551
+ "step": 506
3552
+ },
3553
+ {
3554
+ "epoch": 1.478134110787172,
3555
+ "grad_norm": 0.37408255528035744,
3556
+ "learning_rate": 7.1111633152764705e-06,
3557
+ "loss": 0.918,
3558
+ "step": 507
3559
+ },
3560
+ {
3561
+ "epoch": 1.4810495626822158,
3562
+ "grad_norm": 0.3833103179567533,
3563
+ "learning_rate": 7.036943595760353e-06,
3564
+ "loss": 0.8998,
3565
+ "step": 508
3566
+ },
3567
+ {
3568
+ "epoch": 1.4839650145772594,
3569
+ "grad_norm": 0.4014548252016667,
3570
+ "learning_rate": 6.963030454440111e-06,
3571
+ "loss": 0.8555,
3572
+ "step": 509
3573
+ },
3574
+ {
3575
+ "epoch": 1.4868804664723032,
3576
+ "grad_norm": 0.390416467602609,
3577
+ "learning_rate": 6.889425639372427e-06,
3578
+ "loss": 0.915,
3579
+ "step": 510
3580
+ },
3581
+ {
3582
+ "epoch": 1.489795918367347,
3583
+ "grad_norm": 0.36354946444392827,
3584
+ "learning_rate": 6.816130891322048e-06,
3585
+ "loss": 0.8467,
3586
+ "step": 511
3587
+ },
3588
+ {
3589
+ "epoch": 1.4927113702623906,
3590
+ "grad_norm": 0.34245284338451154,
3591
+ "learning_rate": 6.743147943720561e-06,
3592
+ "loss": 0.8704,
3593
+ "step": 512
3594
+ },
3595
+ {
3596
+ "epoch": 1.4956268221574345,
3597
+ "grad_norm": 0.3577510719440281,
3598
+ "learning_rate": 6.6704785226254455e-06,
3599
+ "loss": 0.8741,
3600
+ "step": 513
3601
+ },
3602
+ {
3603
+ "epoch": 1.498542274052478,
3604
+ "grad_norm": 0.4257938974909593,
3605
+ "learning_rate": 6.598124346679238e-06,
3606
+ "loss": 0.9088,
3607
+ "step": 514
3608
+ },
3609
+ {
3610
+ "epoch": 1.501457725947522,
3611
+ "grad_norm": 0.40239598681570304,
3612
+ "learning_rate": 6.526087127068857e-06,
3613
+ "loss": 0.8626,
3614
+ "step": 515
3615
+ },
3616
+ {
3617
+ "epoch": 1.5043731778425657,
3618
+ "grad_norm": 0.33201278139400314,
3619
+ "learning_rate": 6.4543685674851834e-06,
3620
+ "loss": 0.8985,
3621
+ "step": 516
3622
+ }
3623
+ ],
3624
+ "logging_steps": 1,
3625
+ "max_steps": 686,
3626
+ "num_input_tokens_seen": 0,
3627
+ "num_train_epochs": 2,
3628
+ "save_steps": 172,
3629
+ "stateful_callbacks": {
3630
+ "TrainerControl": {
3631
+ "args": {
3632
+ "should_epoch_stop": false,
3633
+ "should_evaluate": false,
3634
+ "should_log": false,
3635
+ "should_save": true,
3636
+ "should_training_stop": false
3637
+ },
3638
+ "attributes": {}
3639
+ }
3640
+ },
3641
+ "total_flos": 2140852218494976.0,
3642
+ "train_batch_size": 2,
3643
+ "trial_name": null,
3644
+ "trial_params": null
3645
+ }
checkpoint-516/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e4c923c8239e75e3b9f846483cac70cb0167e52a9c864115f5cae916c9a4021
3
+ size 8376
checkpoint-516/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)