Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,52 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- DongkiKim/Mol-LLaMA-Instruct
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
9 |
+
tags:
|
10 |
+
- biology
|
11 |
+
- chemistry
|
12 |
+
- medical
|
13 |
+
---
|
14 |
+
|
15 |
+
# Mol-Llama-3-8B-Instruct
|
16 |
+
[[Project Page](https://mol-llama.github.io/)] [[Paper](https://arxiv.org/abs/2502.13449)] [[GitHub](https://github.com/DongkiKim95/Mol-LLaMA)]
|
17 |
+
|
18 |
+
This repo contains the weights of Mol-LLaMA including the LoRA weights and projectors, based on [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
|
19 |
+
|
20 |
+
## Architecture
|
21 |
+

|
22 |
+
1) Molecular encoders: Pretrained 2D encoder ([MoleculeSTM](https://huggingface.co/chao1224/MoleculeSTM)) and 3D encoder ([Uni-Mol](https://huggingface.co/dptech/Uni-Mol-Models))
|
23 |
+
2) Blending Module: Combining complementary information from 2D and 3D encoders via cross-attention
|
24 |
+
3) Q-Former: Embed molecular representations into query tokens based on [SciBERT](https://huggingface.co/allenai/scibert_scivocab_uncased)
|
25 |
+
4) LoRA: Adapters for fine-tuning LLMs
|
26 |
+
|
27 |
+
|
28 |
+
## Training Dataset
|
29 |
+
|
30 |
+
Mol-LLaMA is trained on [Mol-LLaMA-Instruct](https://huggingface.co/datasets/DongkiKim/Mol-LLaMA-Instruct), to learn the fundamental characteristics of molecules with the reasoning ability and explanbility.
|
31 |
+
|
32 |
+
## How to Use
|
33 |
+
|
34 |
+
Please check out [the exemplar code for inference](https://github.com/DongkiKim95/Mol-LLaMA/blob/master/playground.py) in the Github repo.
|
35 |
+
|
36 |
+
## Citation
|
37 |
+
|
38 |
+
If you find our model useful, please consider citing our work.
|
39 |
+
```
|
40 |
+
@misc{kim2025molllama,
|
41 |
+
title={Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model},
|
42 |
+
author={Dongki Kim and Wonbin Lee and Sung Ju Hwang},
|
43 |
+
year={2025},
|
44 |
+
eprint={2502.13449},
|
45 |
+
archivePrefix={arXiv},
|
46 |
+
primaryClass={cs.LG}
|
47 |
+
}
|
48 |
+
```
|
49 |
+
|
50 |
+
## Acknowledgements
|
51 |
+
|
52 |
+
We appreciate [LLaMA](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), [3D-MoLM](https://huggingface.co/Sihangli/3D-MoLM), [MoleculeSTM](https://huggingface.co/chao1224/MoleculeSTM), [Uni-Mol](https://huggingface.co/dptech/Uni-Mol-Models) and [SciBERT](https://huggingface.co/allenai/scibert_scivocab_uncased) for their open-source contributions.
|