--- license: apache-2.0 datasets: - DongkiKim/Mol-LLaMA-Instruct language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct tags: - biology - chemistry - medical --- # Mol-Llama-3-8B-Instruct [[Project Page](https://mol-llama.github.io/)] [[Paper](https://arxiv.org/abs/2502.13449)] [[GitHub](https://github.com/DongkiKim95/Mol-LLaMA)] This repo contains the weights of Mol-LLaMA including the LoRA weights and projectors, based on [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). ## Architecture ![image.png](architecture.png) 1) Molecular encoders: Pretrained 2D encoder ([MoleculeSTM](https://huggingface.co/chao1224/MoleculeSTM)) and 3D encoder ([Uni-Mol](https://huggingface.co/dptech/Uni-Mol-Models)) 2) Blending Module: Combining complementary information from 2D and 3D encoders via cross-attention 3) Q-Former: Embed molecular representations into query tokens based on [SciBERT](https://huggingface.co/allenai/scibert_scivocab_uncased) 4) LoRA: Adapters for fine-tuning LLMs ## Training Dataset Mol-LLaMA is trained on [Mol-LLaMA-Instruct](https://huggingface.co/datasets/DongkiKim/Mol-LLaMA-Instruct), to learn the fundamental characteristics of molecules with the reasoning ability and explanbility. ## How to Use Please check out [the exemplar code for inference](https://github.com/DongkiKim95/Mol-LLaMA/blob/master/playground.py) in the Github repo. ## Citation If you find our model useful, please consider citing our work. ``` @misc{kim2025molllama, title={Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model}, author={Dongki Kim and Wonbin Lee and Sung Ju Hwang}, year={2025}, eprint={2502.13449}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ## Acknowledgements We appreciate [LLaMA](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), [3D-MoLM](https://huggingface.co/Sihangli/3D-MoLM), [MoleculeSTM](https://huggingface.co/chao1224/MoleculeSTM), [Uni-Mol](https://huggingface.co/dptech/Uni-Mol-Models) and [SciBERT](https://huggingface.co/allenai/scibert_scivocab_uncased) for their open-source contributions.