File size: 2,924 Bytes
85a5760 1bc7f3a 85a5760 036cac0 68549e4 85a5760 e204a5f 85a5760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- ko
datasets:
- DopeorNope/DPO-Ko-Dataset
- DopeorNope/New_Data_Technology
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
**The license is `cc-by-nc-sa-4.0`.**
**(์ฃผ)๋ฏธ๋์ด๊ทธ๋ฃน์ฌ๋๊ณผ์ฒ๊ณผ (์ฃผ)๋ง์ปค์ LLM ์ฐ๊ตฌ ์ปจ์์์์ผ๋ก ๊ฐ๋ฐ๋ ๋ชจ๋ธ์
๋๋ค**
# **๐Dear_My_best_Friends-v2-13B๐**

The main image is generated image using playground AI.
## Model Details
**Model Developers** Seungyoo Lee (DopeorNope)
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
Dear_My_best_Friends-13B is an auto-regressive 13B language model based on the LLaMA2 transformer architecture.
**Base Model** [DopeorNope/Dear_My_best_Friend-SFT-v2-13B](https://huggingface.co/DopeorNope/Dear_My_best_Friend-SFT-v2-13B)- not uploaded yet
COKAL_pre_DPO_Test_v3-13b is the SFT model to train the DPO method.
**Training Dataset**
- DPO training dataset: [DopeorNope/DPO-Ko-Dataset](private) - private
This dataset was constructed by directly collecting and reorganizing data by DopeorNope, obtaining insights from ["lvwerra/stack-exchange-paired"](https://huggingface.co/datasets/lvwerra/stack-exchange-paired) to create a paired dataset. (It means I do not use stack-exchange-paired; I just got an insight from it.)
- SFT training dataset: [DopeorNope/New_Data_Technology](private) - private
This dataset is based on ["HumanF-MarkrAI's private data"](private) and has been processed using the Near Dedup algorithm to remove items with a Jaccard Similarity threshold of 0.8 or higher. In addition, inconsistent inputs have been cleaned and modified.
Moreover, I implemented a new method(It is a test version, and I will share it soon).
**Training**
I developed the model in an environment with four RTX 3090 GPUs running Ubuntu 18.04.
It seems that when uploading the model directly to a repository from a Linux server, there may be an issue causing the model to appear to have more parameters. However, this model is based on a 13B architecture.
# Implementation Code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "Dear_My_best_Friends-v2-13B"
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
model_tokenizer = AutoTokenizer.from_pretrained(repo)
```
# Acknowledgement
์ด ๋ชจ๋ธ์ ๊ณผํ๊ธฐ์ ์ ๋ณดํต์ ๋ถยท๊ด์ฃผ๊ด์ญ์๊ฐ ๊ณต๋ ์ง์ํ '์ธ๊ณต์ง๋ฅ ์ค์ฌ ์ฐ์
์ตํฉ ์ง์ ๋จ์ง ์กฐ์ฑ์ฌ์
'์ผ๋ก ์ง์์ ๋ฐ์ ์ํ๋ ์ฐ๊ตฌ ๊ฒฐ๊ณผ์
๋๋ค.
This model was supported by Artificial intelligence industrial convergence cluster development project funded by the Ministry of Science and ICT(MSIT, Korea)&Gwangju Metropolitan City.
--- |