Create medsam2_model.py
Browse files- medsam2_model.py +32 -0
medsam2_model.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from skimage import transform
|
4 |
+
# from sam2_train.build_sam import build_sam2
|
5 |
+
# from sam2_train.sam2_image_predictor import SAM2ImagePredictor
|
6 |
+
from sam2.build_sam import build_sam2
|
7 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
8 |
+
|
9 |
+
class MedSAM2:
|
10 |
+
def __init__(self, model_path, device="cpu"):
|
11 |
+
self.device = device
|
12 |
+
self.model = build_sam2("sam2_hiera_t", model_path, device=device)
|
13 |
+
self.predictor = SAM2ImagePredictor(self.model)
|
14 |
+
|
15 |
+
def predict(self, image: np.ndarray, box: list[float]) -> np.ndarray:
|
16 |
+
image_3c = image if image.shape[2] == 3 else np.repeat(image[:, :, None], 3, axis=-1)
|
17 |
+
img_1024 = transform.resize(image_3c, (1024, 1024), preserve_range=True).astype(np.uint8)
|
18 |
+
|
19 |
+
box_np = np.array(box)
|
20 |
+
box_1024 = box_np / np.array([image.shape[1], image.shape[0], image.shape[1], image.shape[0]]) * 1024
|
21 |
+
box_1024 = box_1024[None, :]
|
22 |
+
|
23 |
+
with torch.inference_mode(), torch.autocast(self.device, dtype=torch.bfloat16):
|
24 |
+
self.predictor.set_image(img_1024)
|
25 |
+
masks, _, _ = self.predictor.predict(
|
26 |
+
point_coords=None,
|
27 |
+
point_labels=None,
|
28 |
+
box=box_1024,
|
29 |
+
multimask_output=False
|
30 |
+
)
|
31 |
+
|
32 |
+
return masks[0].astype(np.uint8)
|