Update inference.py
Browse files- inference.py +26 -8
inference.py
CHANGED
@@ -1,16 +1,34 @@
|
|
1 |
from PIL import Image
|
2 |
import numpy as np
|
|
|
|
|
3 |
|
4 |
-
class Pipeline:
|
5 |
def __init__(self, path=""):
|
6 |
-
print("
|
7 |
|
8 |
def __call__(self, inputs):
|
9 |
-
|
10 |
|
11 |
-
if isinstance(
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
import numpy as np
|
3 |
+
import base64
|
4 |
+
from io import BytesIO
|
5 |
|
6 |
+
class Pipeline:
|
7 |
def __init__(self, path=""):
|
8 |
+
print("Pipeline initialized")
|
9 |
|
10 |
def __call__(self, inputs):
|
11 |
+
image_data = inputs.get("image")
|
12 |
|
13 |
+
if isinstance(image_data, str):
|
14 |
+
image_bytes = base64.b64decode(image_data)
|
15 |
+
image = Image.open(BytesIO(image_bytes))
|
16 |
+
else:
|
17 |
+
return {"error": "No image provided"}
|
18 |
|
19 |
+
width, height = image.size
|
20 |
+
|
21 |
+
# Пример простой маски: прямоугольник по центру
|
22 |
+
mask = np.zeros((height, width), dtype=np.uint8)
|
23 |
+
mask[height//4: 3*height//4, width//4: 3*width//4] = 1
|
24 |
+
|
25 |
+
# Преобразуем в обычный Python-список
|
26 |
+
mask_list = mask.tolist()
|
27 |
+
|
28 |
+
return [
|
29 |
+
{
|
30 |
+
"label": "mock-segment",
|
31 |
+
"mask": mask_list,
|
32 |
+
"score": 0.99
|
33 |
+
}
|
34 |
+
]
|