import torch import numpy as np from skimage import transform # from sam2_train.build_sam import build_sam2 # from sam2_train.sam2_image_predictor import SAM2ImagePredictor from sam2.build_sam import build_sam2 from sam2.sam2_image_predictor import SAM2ImagePredictor class MedSAM2: def __init__(self, model_path, device="cpu"): self.device = device self.model = build_sam2("sam2_hiera_t", model_path, device=device) self.predictor = SAM2ImagePredictor(self.model) def predict(self, image: np.ndarray, box: list[float]) -> np.ndarray: image_3c = image if image.shape[2] == 3 else np.repeat(image[:, :, None], 3, axis=-1) img_1024 = transform.resize(image_3c, (1024, 1024), preserve_range=True).astype(np.uint8) box_np = np.array(box) box_1024 = box_np / np.array([image.shape[1], image.shape[0], image.shape[1], image.shape[0]]) * 1024 box_1024 = box_1024[None, :] with torch.inference_mode(), torch.autocast(self.device, dtype=torch.bfloat16): self.predictor.set_image(img_1024) masks, _, _ = self.predictor.predict( point_coords=None, point_labels=None, box=box_1024, multimask_output=False ) return masks[0].astype(np.uint8)