Feature Extraction
Transformers
Safetensors
English
Chinese
emova
Omni-modal-LLM
Multi-modal-LLM
Emotional-spoken-dialogue
custom_code
Eval Results
KaiChen1998 commited on
Commit
eddbd6c
·
verified ·
1 Parent(s): 88957dc

Upload modeling_rope_utils.py

Browse files
Files changed (1) hide show
  1. modeling_rope_utils.py +558 -0
modeling_rope_utils.py ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ from typing import Optional, Tuple
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import is_torch_available, logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ if is_torch_available():
24
+ import torch
25
+
26
+
27
+ def _compute_default_rope_parameters(
28
+ config: Optional[PretrainedConfig] = None,
29
+ device: Optional["torch.device"] = None,
30
+ seq_len: Optional[int] = None,
31
+ **rope_kwargs,
32
+ ) -> Tuple["torch.Tensor", float]:
33
+ """
34
+ Computes the inverse frequencies according to the original RoPE implementation
35
+ Args:
36
+ config ([`~transformers.PretrainedConfig`]):
37
+ The model configuration.
38
+ device (`torch.device`):
39
+ The device to use for initialization of the inverse frequencies.
40
+ seq_len (`int`, *optional*):
41
+ The current sequence length. Unused for this type of RoPE.
42
+ rope_kwargs (`Dict`, *optional*):
43
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
44
+ Returns:
45
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
46
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
47
+ """
48
+ if config is not None and len(rope_kwargs) > 0:
49
+ raise ValueError(
50
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
51
+ f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
52
+ )
53
+ if len(rope_kwargs) > 0:
54
+ base = rope_kwargs["base"]
55
+ dim = rope_kwargs["dim"]
56
+ elif config is not None:
57
+ base = config.rope_theta
58
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
59
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
60
+ dim = int(head_dim * partial_rotary_factor)
61
+
62
+ attention_factor = 1.0 # Unused in this type of RoPE
63
+
64
+ # Compute the inverse frequencies
65
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
66
+ return inv_freq, attention_factor
67
+
68
+
69
+ def _compute_linear_scaling_rope_parameters(
70
+ config: Optional[PretrainedConfig] = None,
71
+ device: Optional["torch.device"] = None,
72
+ seq_len: Optional[int] = None,
73
+ **rope_kwargs,
74
+ ) -> Tuple["torch.Tensor", float]:
75
+ """
76
+ Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
77
+ Args:
78
+ config ([`~transformers.PretrainedConfig`]):
79
+ The model configuration.
80
+ device (`torch.device`):
81
+ The device to use for initialization of the inverse frequencies.
82
+ seq_len (`int`, *optional*):
83
+ The current sequence length. Unused for this type of RoPE.
84
+ rope_kwargs (`Dict`, *optional*):
85
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
86
+ Returns:
87
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
88
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
89
+ """
90
+ if config is not None and len(rope_kwargs) > 0:
91
+ raise ValueError(
92
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
93
+ f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
94
+ )
95
+ if len(rope_kwargs) > 0:
96
+ factor = rope_kwargs["factor"]
97
+ elif config is not None:
98
+ factor = config.rope_scaling["factor"]
99
+
100
+ # Gets the default RoPE parameters
101
+ inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
102
+
103
+ # Then applies linear scaling to the frequencies.
104
+ # NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
105
+ # applying scaling to the inverse frequencies is equivalent.
106
+ inv_freq /= factor
107
+ return inv_freq, attention_factor
108
+
109
+
110
+ def _compute_dynamic_ntk_parameters(
111
+ config: Optional[PretrainedConfig] = None,
112
+ device: Optional["torch.device"] = None,
113
+ seq_len: Optional[int] = None,
114
+ **rope_kwargs,
115
+ ) -> Tuple["torch.Tensor", float]:
116
+ """
117
+ Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
118
+ Args:
119
+ config ([`~transformers.PretrainedConfig`]):
120
+ The model configuration.
121
+ device (`torch.device`):
122
+ The device to use for initialization of the inverse frequencies.
123
+ seq_len (`int`, *optional*):
124
+ The current sequence length, used to update the dynamic RoPE at inference time.
125
+ rope_kwargs (`Dict`, *optional*):
126
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
127
+ Returns:
128
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
129
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
130
+ """
131
+ # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
132
+ if config is not None and len(rope_kwargs) > 0:
133
+ raise ValueError(
134
+ "Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
135
+ f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
136
+ )
137
+ if len(rope_kwargs) > 0:
138
+ base = rope_kwargs["base"]
139
+ dim = rope_kwargs["dim"]
140
+ max_position_embeddings = rope_kwargs["max_position_embeddings"]
141
+ factor = rope_kwargs["factor"]
142
+ elif config is not None:
143
+ base = config.rope_theta
144
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
145
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
146
+ dim = int(head_dim * partial_rotary_factor)
147
+ max_position_embeddings = config.max_position_embeddings
148
+ factor = config.rope_scaling["factor"]
149
+
150
+ attention_factor = 1.0 # Unused in this type of RoPE
151
+
152
+ # seq_len: default to max_position_embeddings, e.g. at init time
153
+ seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
154
+
155
+ # Compute the inverse frequencies
156
+ base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
157
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
158
+ return inv_freq, attention_factor
159
+
160
+
161
+ def _compute_yarn_parameters(
162
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
163
+ ) -> Tuple["torch.Tensor", float]:
164
+ """
165
+ Computes the inverse frequencies with NTK scaling. Please refer to the
166
+ [original paper](https://arxiv.org/abs/2309.00071)
167
+ Args:
168
+ config ([`~transformers.PretrainedConfig`]):
169
+ The model configuration.
170
+ device (`torch.device`):
171
+ The device to use for initialization of the inverse frequencies.
172
+ seq_len (`int`, *optional*):
173
+ The current sequence length. Unused for this type of RoPE.
174
+ rope_kwargs (`Dict`, *optional*):
175
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
176
+ Returns:
177
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
178
+ post-processing scaling factor applied to the computed cos/sin.
179
+ """
180
+ # No need to keep BC with yarn, unreleased when this new pattern was created.
181
+ if len(rope_kwargs) > 0:
182
+ raise ValueError(
183
+ f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
184
+ )
185
+
186
+ base = config.rope_theta
187
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
188
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
189
+ dim = int(head_dim * partial_rotary_factor)
190
+ max_position_embeddings = config.max_position_embeddings
191
+ factor = config.rope_scaling["factor"]
192
+
193
+ # Sets the attention factor as suggested in the paper
194
+ attention_factor = config.rope_scaling.get("attention_factor")
195
+ if attention_factor is None:
196
+ attention_factor = 0.1 * math.log(factor) + 1.0
197
+
198
+ # Optional config options
199
+ # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
200
+ beta_fast = config.rope_scaling.get("beta_fast") or 32
201
+ beta_slow = config.rope_scaling.get("beta_slow") or 1
202
+
203
+ # Compute the inverse frequencies
204
+ def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
205
+ """Inverse dimension formula to find the dimension based on the number of rotations"""
206
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
207
+
208
+ def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
209
+ """Find dimension range bounds based on rotations"""
210
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
211
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
212
+ return max(low, 0), min(high, dim - 1)
213
+
214
+ def linear_ramp_factor(min, max, dim):
215
+ if min == max:
216
+ max += 0.001 # Prevent singularity
217
+
218
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
219
+ ramp_func = torch.clamp(linear_func, 0, 1)
220
+ return ramp_func
221
+
222
+ # Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
223
+ # to expand the possible context length. In other words, interpolation = apply scaling factor.
224
+ pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
225
+ inv_freq_extrapolation = 1.0 / pos_freqs
226
+ inv_freq_interpolation = 1.0 / (factor * pos_freqs)
227
+
228
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
229
+
230
+ # Get n-dimensional rotational scaling corrected for extrapolation
231
+ inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
232
+ inv_freq = (
233
+ inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
234
+ + inv_freq_extrapolation * inv_freq_extrapolation_factor
235
+ )
236
+
237
+ return inv_freq, attention_factor
238
+
239
+
240
+ def _compute_longrope_parameters(
241
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
242
+ ) -> Tuple["torch.Tensor", float]:
243
+ """
244
+ Computes the inverse frequencies with LongRoPE scaling. Please refer to the
245
+ [original implementation](https://github.com/microsoft/LongRoPE)
246
+ Args:
247
+ config ([`~transformers.PretrainedConfig`]):
248
+ The model configuration.
249
+ device (`torch.device`):
250
+ The device to use for initialization of the inverse frequencies.
251
+ seq_len (`int`, *optional*):
252
+ The current sequence length. Unused for this type of RoPE.
253
+ rope_kwargs (`Dict`, *optional*):
254
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
255
+ Returns:
256
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
257
+ post-processing scaling factor applied to the computed cos/sin.
258
+ """
259
+ # TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
260
+ # No need to keep BC with longrope, unreleased when this new pattern was created.
261
+ if len(rope_kwargs) > 0:
262
+ raise ValueError(
263
+ "Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
264
+ f"{rope_kwargs}"
265
+ )
266
+
267
+ base = config.rope_theta
268
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
269
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
270
+ dim = int(head_dim * partial_rotary_factor)
271
+ long_factor = config.rope_scaling["long_factor"]
272
+ short_factor = config.rope_scaling["short_factor"]
273
+ factor = config.rope_scaling.get("factor")
274
+ attention_factor = config.rope_scaling.get("attention_factor")
275
+
276
+ # NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
277
+ # `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
278
+ # values to compute the default attention scaling factor, instead of using `factor`.
279
+ if hasattr(config, "original_max_position_embeddings"):
280
+ max_position_embeddings = config.original_max_position_embeddings
281
+ expanded_max_position_embeddings = config.max_position_embeddings
282
+ factor = expanded_max_position_embeddings / max_position_embeddings
283
+ else:
284
+ max_position_embeddings = config.max_position_embeddings
285
+ expanded_max_position_embeddings = max_position_embeddings * factor
286
+
287
+ # Sets the attention factor as suggested in the paper
288
+ if attention_factor is None:
289
+ if factor <= 1.0:
290
+ attention_factor = 1.0
291
+ else:
292
+ attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
293
+
294
+ # Compute the inverse frequencies -- scaled based on the target sequence length
295
+ if expanded_max_position_embeddings > max_position_embeddings:
296
+ ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
297
+ else:
298
+ ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
299
+ inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
300
+ inv_freq = 1.0 / (ext_factors * base ** inv_freq_shape)
301
+
302
+ return inv_freq, attention_factor
303
+
304
+
305
+ def _compute_llama3_parameters(
306
+ config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
307
+ ) -> Tuple["torch.Tensor", float]:
308
+ """
309
+ Computes the inverse frequencies for llama 3.1.
310
+
311
+ Args:
312
+ config ([`~transformers.PretrainedConfig`]):
313
+ The model configuration.
314
+ device (`torch.device`):
315
+ The device to use for initialization of the inverse frequencies.
316
+ seq_len (`int`, *optional*):
317
+ The current sequence length. Unused for this type of RoPE.
318
+ rope_kwargs (`Dict`, *optional*):
319
+ BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
320
+ Returns:
321
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
322
+ post-processing scaling factor applied to the computed cos/sin.
323
+ """
324
+ # Gets the default RoPE parameters
325
+ inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
326
+
327
+ factor = config.rope_scaling["factor"] # `8` in the original implementation
328
+ low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
329
+ high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
330
+ old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
331
+
332
+ low_freq_wavelen = old_context_len / low_freq_factor
333
+ high_freq_wavelen = old_context_len / high_freq_factor
334
+
335
+ wavelen = 2 * math.pi / inv_freq
336
+ # wavelen < high_freq_wavelen: do nothing
337
+ # wavelen > low_freq_wavelen: divide by factor
338
+ inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
339
+ # otherwise: interpolate between the two, using a smooth factor
340
+ smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
341
+ smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
342
+ is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
343
+ inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
344
+
345
+ return inv_freq_llama, attention_factor
346
+
347
+
348
+ # This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
349
+ # from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
350
+ # parameterizations, as long as the callable has the same signature.
351
+ ROPE_INIT_FUNCTIONS = {
352
+ "default": _compute_default_rope_parameters,
353
+ "linear": _compute_linear_scaling_rope_parameters,
354
+ "dynamic": _compute_dynamic_ntk_parameters,
355
+ "yarn": _compute_yarn_parameters,
356
+ "longrope": _compute_longrope_parameters,
357
+ "llama3": _compute_llama3_parameters,
358
+ }
359
+
360
+
361
+ def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None):
362
+ """Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
363
+ # BC: "rope_type" was originally "type" -- let's check for "rope_type" when "type" is present
364
+ if "type" in received_keys:
365
+ received_keys -= {"type"}
366
+ required_keys.add("rope_type")
367
+
368
+ missing_keys = required_keys - received_keys
369
+ if missing_keys:
370
+ raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
371
+
372
+ if optional_keys is not None:
373
+ unused_keys = received_keys - required_keys - optional_keys
374
+ else:
375
+ unused_keys = received_keys - required_keys
376
+ if unused_keys:
377
+ logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
378
+
379
+
380
+ def _validate_default_rope_parameters(config: PretrainedConfig):
381
+ rope_scaling = config.rope_scaling
382
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
383
+ required_keys = {"rope_type"}
384
+ received_keys = set(rope_scaling.keys())
385
+ _check_received_keys(rope_type, received_keys, required_keys)
386
+
387
+
388
+ def _validate_linear_scaling_rope_parameters(config: PretrainedConfig):
389
+ rope_scaling = config.rope_scaling
390
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
391
+ required_keys = {"rope_type", "factor"}
392
+ received_keys = set(rope_scaling.keys())
393
+ _check_received_keys(rope_type, received_keys, required_keys)
394
+
395
+ factor = rope_scaling["factor"]
396
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
397
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
398
+
399
+
400
+ def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig):
401
+ rope_scaling = config.rope_scaling
402
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
403
+ required_keys = {"rope_type", "factor"}
404
+ # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
405
+ optional_keys = {"original_max_position_embeddings"}
406
+ received_keys = set(rope_scaling.keys())
407
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
408
+
409
+ factor = rope_scaling["factor"]
410
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
411
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
412
+
413
+
414
+ def _validate_yarn_parameters(config: PretrainedConfig):
415
+ rope_scaling = config.rope_scaling
416
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
417
+ required_keys = {"rope_type", "factor"}
418
+ optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
419
+ received_keys = set(rope_scaling.keys())
420
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
421
+
422
+ factor = rope_scaling["factor"]
423
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
424
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
425
+
426
+ attention_factor = rope_scaling.get("attention_factor")
427
+ if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
428
+ logger.warning(
429
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
430
+ )
431
+ beta_fast = rope_scaling.get("beta_fast")
432
+ if beta_fast is not None and not isinstance(beta_fast, float):
433
+ logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
434
+ beta_slow = rope_scaling.get("beta_slow")
435
+ if beta_slow is not None and not isinstance(beta_slow, float):
436
+ logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
437
+
438
+ if (beta_fast or 32) < (beta_slow or 1):
439
+ logger.warning(
440
+ f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
441
+ f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
442
+ )
443
+
444
+
445
+ def _validate_longrope_parameters(config: PretrainedConfig):
446
+ rope_scaling = config.rope_scaling
447
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
448
+ required_keys = {"rope_type", "short_factor", "long_factor"}
449
+ # TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
450
+ optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
451
+ received_keys = set(rope_scaling.keys())
452
+ _check_received_keys(rope_type, received_keys, required_keys, optional_keys)
453
+
454
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
455
+ head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
456
+ dim = int(head_dim * partial_rotary_factor)
457
+
458
+ short_factor = rope_scaling.get("short_factor")
459
+ if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
460
+ logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
461
+ if not len(short_factor) == dim // 2:
462
+ logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
463
+
464
+ long_factor = rope_scaling.get("long_factor")
465
+ if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
466
+ logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
467
+ if not len(long_factor) == dim // 2:
468
+ logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
469
+
470
+ # Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
471
+ # `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
472
+ # unique to longrope (= undesirable)
473
+ if hasattr(config, "original_max_position_embeddings"):
474
+ logger.warning_once(
475
+ "This model has set a `original_max_position_embeddings` field, to be used together with "
476
+ "`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
477
+ "with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
478
+ "as it is compatible with most model architectures."
479
+ )
480
+ else:
481
+ factor = rope_scaling.get("factor")
482
+ if factor is None:
483
+ logger.warning("Missing required keys in `rope_scaling`: 'factor'")
484
+ elif not isinstance(factor, float) or factor < 1.0:
485
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
486
+
487
+ attention_factor = rope_scaling.get("attention_factor")
488
+ if attention_factor is not None:
489
+ if not isinstance(attention_factor, float) or attention_factor < 0.0:
490
+ logger.warning(
491
+ f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
492
+ )
493
+
494
+
495
+ def _validate_llama3_parameters(config: PretrainedConfig):
496
+ rope_scaling = config.rope_scaling
497
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
498
+ required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
499
+ received_keys = set(rope_scaling.keys())
500
+ _check_received_keys(rope_type, received_keys, required_keys)
501
+
502
+ factor = rope_scaling["factor"]
503
+ if factor is None or not isinstance(factor, float) or factor < 1.0:
504
+ logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
505
+
506
+ low_freq_factor = rope_scaling["low_freq_factor"]
507
+ high_freq_factor = rope_scaling["high_freq_factor"]
508
+ if low_freq_factor is None or not isinstance(low_freq_factor, float):
509
+ logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
510
+ if high_freq_factor is None or not isinstance(high_freq_factor, float):
511
+ logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
512
+ if high_freq_factor <= low_freq_factor:
513
+ logger.warning(
514
+ "`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
515
+ f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
516
+ )
517
+
518
+ original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
519
+ if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
520
+ logger.warning(
521
+ "`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
522
+ f"{original_max_position_embeddings}"
523
+ )
524
+ if original_max_position_embeddings >= config.max_position_embeddings:
525
+ logger.warning(
526
+ "`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
527
+ f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
528
+ )
529
+
530
+
531
+ # Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
532
+ ROPE_VALIDATION_FUNCTIONS = {
533
+ "default": _validate_default_rope_parameters,
534
+ "linear": _validate_linear_scaling_rope_parameters,
535
+ "dynamic": _validate_dynamic_scaling_rope_parameters,
536
+ "yarn": _validate_yarn_parameters,
537
+ "longrope": _validate_longrope_parameters,
538
+ "llama3": _validate_llama3_parameters,
539
+ }
540
+
541
+
542
+ def rope_config_validation(config: PretrainedConfig):
543
+ """
544
+ Validate the RoPE config arguments, given a `PretrainedConfig` object
545
+ """
546
+ rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
547
+ if rope_scaling is None:
548
+ return
549
+
550
+ # BC: "rope_type" was originally "type"
551
+ rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
552
+ validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
553
+ if validation_fn is not None:
554
+ validation_fn(config)
555
+ else:
556
+ logger.warning(
557
+ f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
558
+ )