Feature Extraction
Transformers
Safetensors
English
Chinese
emova
Omni-modal-LLM
Multi-modal-LLM
Emotional-spoken-dialogue
custom_code
Eval Results
KaiChen1998 commited on
Commit
076c1c3
Β·
verified Β·
1 Parent(s): 019badb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -3
README.md CHANGED
@@ -181,7 +181,7 @@ model-index:
181
  <img src="https://emova-ollm.github.io/static/images/icons/emova_icon2.png" width="300em"></img>
182
 
183
  πŸ€— [EMOVA-Models](https://huggingface.co/collections/Emova-ollm/emova-models-67779d377bb8261e6057a320) | πŸ€— [EMOVA-Datasets](https://huggingface.co/collections/Emova-ollm/emova-datasets-67779be7d02447a2d0891bf6) | πŸ€— [EMOVA-Demo](https://huggingface.co/spaces/Emova-ollm/EMOVA-demo) <br/>
184
- πŸ“„ [EMOVA-Paper](https://arxiv.org/abs/2409.18042) | 🌐 [Project-Page](https://emova-ollm.github.io/)
185
 
186
  </div>
187
 
@@ -191,13 +191,103 @@ model-index:
191
 
192
  - **State-of-the-art omni-modality performance**: EMOVA achieves state-of-the-art comparable results on both **vision-language** and **speech** benchmarks simultaneously. Our best performing model, **EMOVA-72B**, even surpasses commercial models including GPT-4o and Gemini Pro 1.5.
193
  - **Emotional spoken dialogue**: A **semantic-acoustic disentangled** speech tokenizer and a lightweight **style control** module are adopted for seamless omni-modal alignment and diverse speech style controllability. EMOVA supports **bilingual (Chinese and English)** spoken dialogue with **24 speech style** controls (i.e., 2 speakers, 3 pitches and 4 emotions).
194
- - **Diverse configurations**: We open-source 3 configurations, **EMOVA-3B/7B/72B**, to support omni-modal usage under different computational budgets. Check our [Model Zoo](#model-zoo) and find the best fit model for your computational devices! As far as we know, **EMOVA-72B** is the **very first** open-sourced >70B Omni-modal LLM available!
195
 
196
  <div align="center">
197
- <img src="assets/images/model_architecture.png" width=100%></img>
198
  </div>
199
 
200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  ## Citation
202
 
203
  ```bibtex
 
181
  <img src="https://emova-ollm.github.io/static/images/icons/emova_icon2.png" width="300em"></img>
182
 
183
  πŸ€— [EMOVA-Models](https://huggingface.co/collections/Emova-ollm/emova-models-67779d377bb8261e6057a320) | πŸ€— [EMOVA-Datasets](https://huggingface.co/collections/Emova-ollm/emova-datasets-67779be7d02447a2d0891bf6) | πŸ€— [EMOVA-Demo](https://huggingface.co/spaces/Emova-ollm/EMOVA-demo) <br/>
184
+ πŸ“„ [Paper](https://arxiv.org/abs/2409.18042) | 🌐 [Project-Page](https://emova-ollm.github.io/) | πŸ’» [Github](https://github.com/emova-ollm/EMOVA) | πŸ’» [EMOVA-Speech-Tokenizer-Github](https://github.com/emova-ollm/EMOVA_speech_tokenizer)
185
 
186
  </div>
187
 
 
191
 
192
  - **State-of-the-art omni-modality performance**: EMOVA achieves state-of-the-art comparable results on both **vision-language** and **speech** benchmarks simultaneously. Our best performing model, **EMOVA-72B**, even surpasses commercial models including GPT-4o and Gemini Pro 1.5.
193
  - **Emotional spoken dialogue**: A **semantic-acoustic disentangled** speech tokenizer and a lightweight **style control** module are adopted for seamless omni-modal alignment and diverse speech style controllability. EMOVA supports **bilingual (Chinese and English)** spoken dialogue with **24 speech style** controls (i.e., 2 speakers, 3 pitches and 4 emotions).
194
+ - **Diverse configurations**: We open-source 3 configurations, **EMOVA-3B/7B/72B**, to support omni-modal usage under different computational budgets. Check our [Model Zoo](https://huggingface.co/collections/Emova-ollm/emova-models-67779d377bb8261e6057a320) and find the best fit model for your computational devices!
195
 
196
  <div align="center">
197
+ <img src="https://emova-ollm.github.io/static/images/model_architecture.png" width=100%></img>
198
  </div>
199
 
200
 
201
+ ## Performance
202
+
203
+
204
+ | Benchmarks | EMOVA-3B | EMOVA-7B | EMOVA-72B | GPT-4o | VITA 8x7B | VITA 1.5 | Baichuan-Omni |
205
+ |:------------------:|:-------: |:--------:|:---------:|:------:|:---------:|:--------:|:-------------:|
206
+ | **MME** | 2175 | 2317 | 2402 | 2310 | 2097 | 2311 | 2187 |
207
+ | **MMBench** | 79.2 | 83.0 | 86.4 | 83.4 | 71.8 | 76.6 | 76.2 |
208
+ | **SEED-Image** | 74.9 | 75.5 | 76.6 | 77.1 | 72.6 | 74.2 | 74.1 |
209
+ | **MM-Vet** | 57.3 | 59.4 | 64.8 | - | 41.6 | 51.1 | 65.4 |
210
+ | **RealWorldQA** | 62.6 | 67.5 | 71.0 | 75.4 | 59.0 | 66.8 | 62.6 |
211
+ | **TextVQA** | 77.2 | 78.0 | 81.4 | - | 71.8 | 74.9 | 74.3 |
212
+ | **ChartQA** | 81.5 | 84.9 | 88.7 | 85.7 | 76.6 | 79.6 | 79.6 |
213
+ | **DocVQA** | 93.5 | 94.2 | 95.9 | 92.8 | - | - | - |
214
+ | **InfoVQA** | 71.2 | 75.1 | 83.2 | - | - | - | - |
215
+ | **OCRBench** | 803 | 814 | 843 | 736 | 678 | 752 | 700 |
216
+ | **ScienceQA-Img** | 92.7 | 96.4 | 98.2 | - | - | - | - |
217
+ | **AI2D** | 78.6 | 81.7 | 85.8 | 84.6 | 73.1 | 79.3 | - |
218
+ | **MathVista** | 62.6 | 65.5 | 69.9 | 63.8 | 44.9 | 66.2 | 51.9 |
219
+ | **Mathverse** | 31.4 | 40.9 | 50.0 | - | - | - | - |
220
+ | **Librispeech (WER↓)** | 5.4 | 4.1 | 2.9 | - | 3.4 | 8.1 | - |
221
+
222
+
223
+ ## Usage
224
+
225
+ This repo contains the **EMOVA-Qwen2.5-7B** checkpoint organized in the **HuggingFace format**, and thus, and be directly loaded with **transformers Auto APIs**.
226
+
227
+ ```python
228
+ from transformers import AutoModel, AutoProcessor
229
+ from PIL import Image
230
+ import torch
231
+
232
+ ### Uncomment if you want to use Ascend NPUs
233
+ # import torch_npu
234
+ # from torch_npu.contrib import transfer_to_npu
235
+
236
+ # prepare models and processors
237
+ model = AutoModel.from_pretrained(
238
+ "Emova-ollm/emova-qwen-2-5-7b-hf",
239
+ torch_dtype=torch.bfloat16,
240
+ attn_implementation='flash_attention_2', # OR 'sdpa' for Ascend NPUs
241
+ low_cpu_mem_usage=True,
242
+ trust_remote_code=True).eval().cuda()
243
+ processor = AutoProcessor.from_pretrained("Emova-ollm/emova-qwen-2-5-7b-hf", trust_remote_code=True)
244
+
245
+ # only necessary for spoken dialogue
246
+ # Note to inference with speech inputs/outputs, **emova_speech_tokenizer** is still a necessary dependency (https://huggingface.co/Emova-ollm/emova_speech_tokenizer_hf#install).
247
+ speeck_tokenizer = AutoModel.from_pretrained("Emova-ollm/emova_speech_tokenizer_hf", torch_dtype=torch.float32, trust_remote_code=True).eval().cuda()
248
+ processor.set_speech_tokenizer(speeck_tokenizer)
249
+
250
+ # Example 1: image-text
251
+ inputs = dict(
252
+ text=[
253
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
254
+ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What's shown in this image?"}]},
255
+ {"role": "assistant", "content": [{"type": "text", "text": "This image shows a red stop sign."}]},
256
+ {"role": "user", "content": [{"type": "text", "text": "Describe the image in more details."}]},
257
+ ],
258
+ images=Image.open('path/to/image')
259
+ )
260
+
261
+ # Example 2: text-audio
262
+ inputs = dict(
263
+ text=[{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}],
264
+ audios='path/to/audio'
265
+ )
266
+
267
+ # Example 3: image-text-audio
268
+ inputs = dict(
269
+ text=[{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}],
270
+ images=Image.open('path/to/image'),
271
+ audios='path/to/audio'
272
+ )
273
+
274
+ # run processors
275
+ has_speech = 'audios' in inputs.keys()
276
+ inputs = processor(**inputs, return_tensors="pt")
277
+ inputs = inputs.to(model.device)
278
+
279
+ # prepare generation arguments
280
+ gen_kwargs = {"max_new_tokens": 4096, "do_sample": False} # add if necessary
281
+ speech_kwargs = {"speaker": "female", "output_wav_prefix": "output"} if has_speech else {}
282
+
283
+ # run generation
284
+ # for speech outputs, we will return the saved wav paths (c.f., output_wav_prefix)
285
+ with torch.no_grad():
286
+ outputs = model.generate(**inputs, **gen_kwargs)
287
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
288
+ print(processor.batch_decode(outputs, skip_special_tokens=True, **speech_kwargs))
289
+ ```
290
+
291
  ## Citation
292
 
293
  ```bibtex