|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Emova-ollm/emova-alignment-7m |
|
- Emova-ollm/emova-sft-4m |
|
- Emova-ollm/emova-sft-speech-231k |
|
language: |
|
- en |
|
- zh |
|
base_model: |
|
- Emova-ollm/qwen2vit600m |
|
- Emova-ollm/Qwen2.5-7B-Instruct_add_speech_token_4096_nostrip |
|
new_version: Emova-ollm/emova-qwen-2-5-7b-hf |
|
library_name: transformers |
|
tags: |
|
- Omni-modal-LLM |
|
- Multi-modal-LLM |
|
- Emotional-spoken-dialogue |
|
model-index: |
|
- name: emova-qwen-2-5-7b |
|
results: |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: AI2D |
|
type: ai2d |
|
metrics: |
|
- type: accuracy |
|
value: 81.7 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: ChartQA |
|
type: chartqa |
|
metrics: |
|
- type: accuracy |
|
value: 84.9 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: DocVQA |
|
type: docvqa |
|
metrics: |
|
- type: accuracy |
|
value: 94.2 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: InfoVQA |
|
type: infovqa |
|
metrics: |
|
- type: accuracy |
|
value: 75.1 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: MathVerse |
|
type: mathverse |
|
metrics: |
|
- type: accuracy |
|
value: 40.9 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: MathVista |
|
type: mathvista |
|
metrics: |
|
- type: accuracy |
|
value: 65.5 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: MMBench |
|
type: mmbench |
|
metrics: |
|
- type: accuracy |
|
value: 83 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: MME |
|
type: mme |
|
metrics: |
|
- type: score |
|
value: 2317 |
|
name: score |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: MMVet |
|
type: mmvet |
|
metrics: |
|
- type: accuracy |
|
value: 59.4 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: OCRBench |
|
type: ocrbench |
|
metrics: |
|
- type: accuracy |
|
value: 814 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: RealWorldQA |
|
type: realworldqa |
|
metrics: |
|
- type: accuracy |
|
value: 67.5 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: Seed-Bench-Image |
|
type: seed-bench-image |
|
metrics: |
|
- type: accuracy |
|
value: 75.5 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: Science-QA |
|
type: science-qa |
|
metrics: |
|
- type: accuracy |
|
value: 96.4 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
type: multimodal |
|
dataset: |
|
name: TextVQA |
|
type: textvqa |
|
metrics: |
|
- type: accuracy |
|
value: 78 |
|
name: accuracy |
|
verified: true |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: LibriSpeech (clean) |
|
type: librispeech_asr |
|
config: clean |
|
split: test |
|
args: |
|
language: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 4.1 |
|
--- |
|
|
|
# EMOVA-Qwen-2.5-7B |
|
|
|
<div align="center"> |
|
|
|
<img src="https://emova-ollm.github.io/static/images/icons/emova_icon2.png" width="300em"></img> |
|
|
|
π€ [EMOVA-Models](https://huggingface.co/collections/Emova-ollm/emova-models-67779d377bb8261e6057a320) | π€ [EMOVA-Datasets](https://huggingface.co/collections/Emova-ollm/emova-datasets-67779be7d02447a2d0891bf6) | π€ [EMOVA-Demo](https://huggingface.co/spaces/Emova-ollm/EMOVA-demo) <br/> |
|
π [Paper](https://arxiv.org/abs/2409.18042) | π [Project-Page](https://emova-ollm.github.io/) | π» [Github](https://github.com/emova-ollm/EMOVA) | π» [EMOVA-Speech-Tokenizer-Github](https://github.com/emova-ollm/EMOVA_speech_tokenizer) |
|
|
|
</div> |
|
|
|
## Model Summary |
|
|
|
**EMOVA** (**EM**otionally **O**mni-present **V**oice **A**ssistant) is a novel end-to-end omni-modal LLM that can see, hear and speak without relying on external models. Given the omni-modal (i.e., textual, visual and speech) inputs, EMOVA can generate both textual and speech responses with vivid emotional controls by utilizing the speech decoder together with a style encoder. EMOVA possesses general omni-modal understanding and generation capabilities, featuring its superiority in advanced vision-language understanding, emotional spoken dialogue, and spoken dialogue with structural data understanding. We summarize its key advantages as: |
|
|
|
- **State-of-the-art omni-modality performance**: EMOVA achieves state-of-the-art comparable results on both **vision-language** and **speech** benchmarks simultaneously. Our best performing model, **EMOVA-72B**, even surpasses commercial models including GPT-4o and Gemini Pro 1.5. |
|
- **Emotional spoken dialogue**: A **semantic-acoustic disentangled** speech tokenizer and a lightweight **style control** module are adopted for seamless omni-modal alignment and diverse speech style controllability. EMOVA supports **bilingual (Chinese and English)** spoken dialogue with **24 speech style** controls (i.e., 2 speakers, 3 pitches and 4 emotions). |
|
- **Diverse configurations**: We open-source 3 configurations, **EMOVA-3B/7B/72B**, to support omni-modal usage under different computational budgets. Check our [Model Zoo](https://huggingface.co/collections/Emova-ollm/emova-models-67779d377bb8261e6057a320) and find the best fit model for your computational devices! |
|
|
|
<div align="center"> |
|
<img src="https://emova-ollm.github.io/static/images/model_architecture.png" width=100%></img> |
|
</div> |
|
|
|
|
|
## Performance |
|
|
|
|
|
| Benchmarks | EMOVA-3B | EMOVA-7B | EMOVA-72B | GPT-4o | VITA 8x7B | VITA 1.5 | Baichuan-Omni | |
|
|:------------------:|:-------: |:--------:|:---------:|:------:|:---------:|:--------:|:-------------:| |
|
| **MME** | 2175 | 2317 | 2402 | 2310 | 2097 | 2311 | 2187 | |
|
| **MMBench** | 79.2 | 83.0 | 86.4 | 83.4 | 71.8 | 76.6 | 76.2 | |
|
| **SEED-Image** | 74.9 | 75.5 | 76.6 | 77.1 | 72.6 | 74.2 | 74.1 | |
|
| **MM-Vet** | 57.3 | 59.4 | 64.8 | - | 41.6 | 51.1 | 65.4 | |
|
| **RealWorldQA** | 62.6 | 67.5 | 71.0 | 75.4 | 59.0 | 66.8 | 62.6 | |
|
| **TextVQA** | 77.2 | 78.0 | 81.4 | - | 71.8 | 74.9 | 74.3 | |
|
| **ChartQA** | 81.5 | 84.9 | 88.7 | 85.7 | 76.6 | 79.6 | 79.6 | |
|
| **DocVQA** | 93.5 | 94.2 | 95.9 | 92.8 | - | - | - | |
|
| **InfoVQA** | 71.2 | 75.1 | 83.2 | - | - | - | - | |
|
| **OCRBench** | 803 | 814 | 843 | 736 | 678 | 752 | 700 | |
|
| **ScienceQA-Img** | 92.7 | 96.4 | 98.2 | - | - | - | - | |
|
| **AI2D** | 78.6 | 81.7 | 85.8 | 84.6 | 73.1 | 79.3 | - | |
|
| **MathVista** | 62.6 | 65.5 | 69.9 | 63.8 | 44.9 | 66.2 | 51.9 | |
|
| **Mathverse** | 31.4 | 40.9 | 50.0 | - | - | - | - | |
|
| **Librispeech (WERβ)** | 5.4 | 4.1 | 2.9 | - | 3.4 | 8.1 | - | |
|
|
|
|
|
## Usage |
|
|
|
This repo contains the **EMOVA-Qwen2.5-7B** checkpoint organized in the **original format** of our [EMOVA codebase](https://github.com/emova-ollm/EMOVA), and thus, it should be utilized together with EMOVA codebase. Its paired config file is provided [here](https://github.com/emova-ollm/EMOVA/blob/main/configs/example/emova/qwen2_5_qwen2vit_nativeAnyres_7b/2.finetune.py). Check [here](https://github.com/emova-ollm/EMOVA#gradio-web-demo) to launch a web demo using this checkpoint. |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{chen2024emova, |
|
title={Emova: Empowering language models to see, hear and speak with vivid emotions}, |
|
author={Chen, Kai and Gou, Yunhao and Huang, Runhui and Liu, Zhili and Tan, Daxin and Xu, Jing and Wang, Chunwei and Zhu, Yi and Zeng, Yihan and Yang, Kuo and others}, |
|
journal={arXiv preprint arXiv:2409.18042}, |
|
year={2024} |
|
} |
|
``` |