mohammedalmatari commited on
Commit
cf8e898
·
verified ·
1 Parent(s): 208ec29

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -16,7 +16,7 @@ tags:
16
  ## Model Description
17
 
18
 
19
- Ui-Taris-7B-Instruct-Finetuned-Os-Atlas is a GUI grounding model finetuned from [**UI-TARS-7B-DPO**](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO).
20
 
21
  This model used the OS-Copilot dataset for fine-tuning: [OS-Copilot](https://huggingface.co/datasets/OS-Copilot/OS-Atlas-data/tree/main).
22
 
@@ -30,7 +30,7 @@ We also include evaluation scripts used on these benchmarks. The table below com
30
  |-------|:----:|:--------------:|:----------:|
31
  | [UI-TARS-7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO) | 7B | 27.0 | 83.0 |
32
  | **Ours** | | | |
33
- | **Ui-Taris-7B-Instruct-Finetuned-Os-Atlas** | 7B | **33.0** | **91.8** |
34
 
35
  **Note - The base model scores slightly lower than the mentioned scores in the paper because the prompts used for evaluation are not publicly available. We used the default prompts when evaluating the base and fine-tuned models.**
36
 
@@ -42,7 +42,7 @@ This model was trained with SFT and LoRA.
42
 
43
  ### Evaluation Scripts:
44
 
45
- Evaluation scripts available here - [Screenspot_Ui-Taris](https://github.com/ma-neuralleap/ScreenSpot-Pro-GUI-Grounding/blob/main/models/uitaris.py)
46
 
47
  ### Quick Start
48
  ```python
@@ -50,13 +50,13 @@ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoPro
50
  from qwen_vl_utils import process_vision_info
51
  # default: Load the model on the available device(s)
52
  model = Qwen2VLForConditionalGeneration.from_pretrained(
53
- "Fintor/Ui-Taris-7B-Instruct-Finetuned-Os-Atlas",
54
  torch_dtype=torch.bfloat16,
55
  attn_implementation="flash_attention_2",
56
  device_map="auto",
57
  )
58
  # default processer
59
- processor = AutoProcessor.from_pretrained("Fintor/Ui-Taris-7B-Instruct-Finetuned-Os-Atlas")
60
  # Example input
61
  messages = [
62
  {
 
16
  ## Model Description
17
 
18
 
19
+ Ui-Tars-7B-Instruct-Finetuned-Os-Atlas is a GUI grounding model finetuned from [**UI-TARS-7B-DPO**](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO).
20
 
21
  This model used the OS-Copilot dataset for fine-tuning: [OS-Copilot](https://huggingface.co/datasets/OS-Copilot/OS-Atlas-data/tree/main).
22
 
 
30
  |-------|:----:|:--------------:|:----------:|
31
  | [UI-TARS-7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO) | 7B | 27.0 | 83.0 |
32
  | **Ours** | | | |
33
+ | **Ui-Tars-7B-Instruct-Finetuned-Os-Atlas** | 7B | **33.0** | **91.8** |
34
 
35
  **Note - The base model scores slightly lower than the mentioned scores in the paper because the prompts used for evaluation are not publicly available. We used the default prompts when evaluating the base and fine-tuned models.**
36
 
 
42
 
43
  ### Evaluation Scripts:
44
 
45
+ Evaluation scripts available here - [Screenspot_Ui-Tars](https://github.com/ma-neuralleap/ScreenSpot-Pro-GUI-Grounding/blob/main/models/uitaris.py)
46
 
47
  ### Quick Start
48
  ```python
 
50
  from qwen_vl_utils import process_vision_info
51
  # default: Load the model on the available device(s)
52
  model = Qwen2VLForConditionalGeneration.from_pretrained(
53
+ "Fintor/Ui-Tars-7B-Instruct-Finetuned-Os-Atlas",
54
  torch_dtype=torch.bfloat16,
55
  attn_implementation="flash_attention_2",
56
  device_map="auto",
57
  )
58
  # default processer
59
+ processor = AutoProcessor.from_pretrained("Fintor/Ui-Tars-7B-Instruct-Finetuned-Os-Atlas")
60
  # Example input
61
  messages = [
62
  {