minpeter commited on
Commit
26be518
·
verified ·
1 Parent(s): 944f527

diff for compatibility

Browse files
Files changed (2) hide show
  1. README.md +11 -479
  2. tokenizer.json +17 -0
README.md CHANGED
@@ -10,491 +10,23 @@ base_model:
10
  - Qwen/Qwen2-VL-2B
11
  ---
12
 
13
- # Qwen2-VL-2B-Instruct
14
- <a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
15
- <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
16
- </a>
17
-
18
- ## Introduction
19
-
20
- We're excited to unveil **Qwen2-VL**, the latest iteration of our Qwen-VL model, representing nearly a year of innovation.
21
-
22
- ### What’s New in Qwen2-VL?
23
-
24
- #### Key Enhancements:
25
-
26
-
27
- * **SoTA understanding of images of various resolution & ratio**: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.
28
-
29
- * **Understanding videos of 20min+**: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc.
30
-
31
- * **Agent that can operate your mobiles, robots, etc.**: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions.
32
-
33
- * **Multilingual Support**: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc.
34
-
35
-
36
- #### Model Architecture Updates:
37
-
38
- * **Naive Dynamic Resolution**: Unlike before, Qwen2-VL can handle arbitrary image resolutions, mapping them into a dynamic number of visual tokens, offering a more human-like visual processing experience.
39
-
40
  <p align="center">
41
- <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/qwen2_vl.jpg" width="80%"/>
42
- <p>
43
-
44
- * **Multimodal Rotary Position Embedding (M-ROPE)**: Decomposes positional embedding into parts to capture 1D textual, 2D visual, and 3D video positional information, enhancing its multimodal processing capabilities.
45
-
46
- <p align="center">
47
- <img src="http://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/mrope.png" width="80%"/>
48
- <p>
49
-
50
- We have three models with 2, 7 and 72 billion parameters. This repo contains the instruction-tuned 2B Qwen2-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2-vl/) and [GitHub](https://github.com/QwenLM/Qwen2-VL).
51
-
52
-
53
-
54
- ## Evaluation
55
-
56
- ### Image Benchmarks
57
-
58
- | Benchmark | InternVL2-2B | MiniCPM-V 2.0 | **Qwen2-VL-2B** |
59
- | :--- | :---: | :---: | :---: |
60
- | MMMU<sub>val</sub> | 36.3 | 38.2 | **41.1** |
61
- | DocVQA<sub>test</sub> | 86.9 | - | **90.1** |
62
- | InfoVQA<sub>test</sub> | 58.9 | - | **65.5** |
63
- | ChartQA<sub>test</sub> | **76.2** | - | 73.5 |
64
- | TextVQA<sub>val</sub> | 73.4 | - | **79.7** |
65
- | OCRBench | 781 | 605 | **794** |
66
- | MTVQA | - | - | **20.0** |
67
- | VCR<sub>en easy</sub> | - | - | **81.45**
68
- | VCR<sub>zh easy</sub> | - | - | **46.16**
69
- | RealWorldQA | 57.3 | 55.8 | **62.9** |
70
- | MME<sub>sum</sub> | **1876.8** | 1808.6 | 1872.0 |
71
- | MMBench-EN<sub>test</sub> | 73.2 | 69.1 | **74.9** |
72
- | MMBench-CN<sub>test</sub> | 70.9 | 66.5 | **73.5** |
73
- | MMBench-V1.1<sub>test</sub> | 69.6 | 65.8 | **72.2** |
74
- | MMT-Bench<sub>test</sub> | - | - | **54.5** |
75
- | MMStar | **49.8** | 39.1 | 48.0 |
76
- | MMVet<sub>GPT-4-Turbo</sub> | 39.7 | 41.0 | **49.5** |
77
- | HallBench<sub>avg</sub> | 38.0 | 36.1 | **41.7** |
78
- | MathVista<sub>testmini</sub> | **46.0** | 39.8 | 43.0 |
79
- | MathVision | - | - | **12.4** |
80
-
81
- ### Video Benchmarks
82
-
83
- | Benchmark | **Qwen2-VL-2B** |
84
- | :--- | :---: |
85
- | MVBench | **63.2** |
86
- | PerceptionTest<sub>test</sub> | **53.9** |
87
- | EgoSchema<sub>test</sub> | **54.9** |
88
- | Video-MME<sub>wo/w subs</sub> | **55.6**/**60.4** |
89
-
90
-
91
- ## Requirements
92
- The code of Qwen2-VL has been in the latest Hugging face transformers and we advise you to build from source with command `pip install git+https://github.com/huggingface/transformers`, or you might encounter the following error:
93
- ```
94
- KeyError: 'qwen2_vl'
95
- ```
96
-
97
- ## Quickstart
98
- We offer a toolkit to help you handle various types of visual input more conveniently. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
99
-
100
- ```bash
101
- pip install qwen-vl-utils
102
- ```
103
-
104
- Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
105
-
106
- ```python
107
- from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
108
- from qwen_vl_utils import process_vision_info
109
-
110
- # default: Load the model on the available device(s)
111
- model = Qwen2VLForConditionalGeneration.from_pretrained(
112
- "Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
113
- )
114
-
115
- # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
116
- # model = Qwen2VLForConditionalGeneration.from_pretrained(
117
- # "Qwen/Qwen2-VL-2B-Instruct",
118
- # torch_dtype=torch.bfloat16,
119
- # attn_implementation="flash_attention_2",
120
- # device_map="auto",
121
- # )
122
-
123
- # default processer
124
- processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
125
-
126
- # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
127
- # min_pixels = 256*28*28
128
- # max_pixels = 1280*28*28
129
- # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
130
-
131
- messages = [
132
- {
133
- "role": "user",
134
- "content": [
135
- {
136
- "type": "image",
137
- "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
138
- },
139
- {"type": "text", "text": "Describe this image."},
140
- ],
141
- }
142
- ]
143
-
144
- # Preparation for inference
145
- text = processor.apply_chat_template(
146
- messages, tokenize=False, add_generation_prompt=True
147
- )
148
- image_inputs, video_inputs = process_vision_info(messages)
149
- inputs = processor(
150
- text=[text],
151
- images=image_inputs,
152
- videos=video_inputs,
153
- padding=True,
154
- return_tensors="pt",
155
- )
156
- inputs = inputs.to("cuda")
157
-
158
- # Inference: Generation of the output
159
- generated_ids = model.generate(**inputs, max_new_tokens=128)
160
- generated_ids_trimmed = [
161
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
162
- ]
163
- output_text = processor.batch_decode(
164
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
165
- )
166
- print(output_text)
167
- ```
168
- <details>
169
- <summary>Without qwen_vl_utils</summary>
170
-
171
- ```python
172
- from PIL import Image
173
- import requests
174
- import torch
175
- from torchvision import io
176
- from typing import Dict
177
- from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
178
-
179
- # Load the model in half-precision on the available device(s)
180
- model = Qwen2VLForConditionalGeneration.from_pretrained(
181
- "Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
182
- )
183
- processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
184
-
185
- # Image
186
- url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
187
- image = Image.open(requests.get(url, stream=True).raw)
188
-
189
- conversation = [
190
- {
191
- "role": "user",
192
- "content": [
193
- {
194
- "type": "image",
195
- },
196
- {"type": "text", "text": "Describe this image."},
197
- ],
198
- }
199
- ]
200
-
201
-
202
- # Preprocess the inputs
203
- text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
204
- # Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'
205
-
206
- inputs = processor(
207
- text=[text_prompt], images=[image], padding=True, return_tensors="pt"
208
- )
209
- inputs = inputs.to("cuda")
210
-
211
- # Inference: Generation of the output
212
- output_ids = model.generate(**inputs, max_new_tokens=128)
213
- generated_ids = [
214
- output_ids[len(input_ids) :]
215
- for input_ids, output_ids in zip(inputs.input_ids, output_ids)
216
- ]
217
- output_text = processor.batch_decode(
218
- generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
219
- )
220
- print(output_text)
221
- ```
222
- </details>
223
-
224
- <details>
225
- <summary>Multi image inference</summary>
226
-
227
- ```python
228
- # Messages containing multiple images and a text query
229
- messages = [
230
- {
231
- "role": "user",
232
- "content": [
233
- {"type": "image", "image": "file:///path/to/image1.jpg"},
234
- {"type": "image", "image": "file:///path/to/image2.jpg"},
235
- {"type": "text", "text": "Identify the similarities between these images."},
236
- ],
237
- }
238
- ]
239
-
240
- # Preparation for inference
241
- text = processor.apply_chat_template(
242
- messages, tokenize=False, add_generation_prompt=True
243
- )
244
- image_inputs, video_inputs = process_vision_info(messages)
245
- inputs = processor(
246
- text=[text],
247
- images=image_inputs,
248
- videos=video_inputs,
249
- padding=True,
250
- return_tensors="pt",
251
- )
252
- inputs = inputs.to("cuda")
253
-
254
- # Inference
255
- generated_ids = model.generate(**inputs, max_new_tokens=128)
256
- generated_ids_trimmed = [
257
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
258
- ]
259
- output_text = processor.batch_decode(
260
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
261
- )
262
- print(output_text)
263
- ```
264
- </details>
265
-
266
- <details>
267
- <summary>Video inference</summary>
268
-
269
- ```python
270
- # Messages containing a images list as a video and a text query
271
- messages = [
272
- {
273
- "role": "user",
274
- "content": [
275
- {
276
- "type": "video",
277
- "video": [
278
- "file:///path/to/frame1.jpg",
279
- "file:///path/to/frame2.jpg",
280
- "file:///path/to/frame3.jpg",
281
- "file:///path/to/frame4.jpg",
282
- ],
283
- "fps": 1.0,
284
- },
285
- {"type": "text", "text": "Describe this video."},
286
- ],
287
- }
288
- ]
289
- # Messages containing a video and a text query
290
- messages = [
291
- {
292
- "role": "user",
293
- "content": [
294
- {
295
- "type": "video",
296
- "video": "file:///path/to/video1.mp4",
297
- "max_pixels": 360 * 420,
298
- "fps": 1.0,
299
- },
300
- {"type": "text", "text": "Describe this video."},
301
- ],
302
- }
303
- ]
304
-
305
- # Preparation for inference
306
- text = processor.apply_chat_template(
307
- messages, tokenize=False, add_generation_prompt=True
308
- )
309
- image_inputs, video_inputs = process_vision_info(messages)
310
- inputs = processor(
311
- text=[text],
312
- images=image_inputs,
313
- videos=video_inputs,
314
- padding=True,
315
- return_tensors="pt",
316
- )
317
- inputs = inputs.to("cuda")
318
-
319
- # Inference
320
- generated_ids = model.generate(**inputs, max_new_tokens=128)
321
- generated_ids_trimmed = [
322
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
323
- ]
324
- output_text = processor.batch_decode(
325
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
326
- )
327
- print(output_text)
328
- ```
329
- </details>
330
-
331
- <details>
332
- <summary>Batch inference</summary>
333
-
334
- ```python
335
- # Sample messages for batch inference
336
- messages1 = [
337
- {
338
- "role": "user",
339
- "content": [
340
- {"type": "image", "image": "file:///path/to/image1.jpg"},
341
- {"type": "image", "image": "file:///path/to/image2.jpg"},
342
- {"type": "text", "text": "What are the common elements in these pictures?"},
343
- ],
344
- }
345
- ]
346
- messages2 = [
347
- {"role": "system", "content": "You are a helpful assistant."},
348
- {"role": "user", "content": "Who are you?"},
349
- ]
350
- # Combine messages for batch processing
351
- messages = [messages1, messages1]
352
-
353
- # Preparation for batch inference
354
- texts = [
355
- processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
356
- for msg in messages
357
- ]
358
- image_inputs, video_inputs = process_vision_info(messages)
359
- inputs = processor(
360
- text=texts,
361
- images=image_inputs,
362
- videos=video_inputs,
363
- padding=True,
364
- return_tensors="pt",
365
- )
366
- inputs = inputs.to("cuda")
367
-
368
- # Batch Inference
369
- generated_ids = model.generate(**inputs, max_new_tokens=128)
370
- generated_ids_trimmed = [
371
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
372
- ]
373
- output_texts = processor.batch_decode(
374
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
375
- )
376
- print(output_texts)
377
- ```
378
- </details>
379
-
380
- ### More Usage Tips
381
-
382
- For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
383
-
384
- ```python
385
- # You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
386
- ## Local file path
387
- messages = [
388
- {
389
- "role": "user",
390
- "content": [
391
- {"type": "image", "image": "file:///path/to/your/image.jpg"},
392
- {"type": "text", "text": "Describe this image."},
393
- ],
394
- }
395
- ]
396
- ## Image URL
397
- messages = [
398
- {
399
- "role": "user",
400
- "content": [
401
- {"type": "image", "image": "http://path/to/your/image.jpg"},
402
- {"type": "text", "text": "Describe this image."},
403
- ],
404
- }
405
- ]
406
- ## Base64 encoded image
407
- messages = [
408
- {
409
- "role": "user",
410
- "content": [
411
- {"type": "image", "image": "data:image;base64,/9j/..."},
412
- {"type": "text", "text": "Describe this image."},
413
- ],
414
- }
415
- ]
416
- ```
417
- #### Image Resolution for performance boost
418
-
419
- The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
420
-
421
- ```python
422
- min_pixels = 256 * 28 * 28
423
- max_pixels = 1280 * 28 * 28
424
- processor = AutoProcessor.from_pretrained(
425
- "Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
426
- )
427
- ```
428
-
429
- Besides, We provide two methods for fine-grained control over the image size input to the model:
430
-
431
- 1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
432
-
433
- 2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
434
-
435
- ```python
436
- # min_pixels and max_pixels
437
- messages = [
438
- {
439
- "role": "user",
440
- "content": [
441
- {
442
- "type": "image",
443
- "image": "file:///path/to/your/image.jpg",
444
- "resized_height": 280,
445
- "resized_width": 420,
446
- },
447
- {"type": "text", "text": "Describe this image."},
448
- ],
449
- }
450
- ]
451
- # resized_height and resized_width
452
- messages = [
453
- {
454
- "role": "user",
455
- "content": [
456
- {
457
- "type": "image",
458
- "image": "file:///path/to/your/image.jpg",
459
- "min_pixels": 50176,
460
- "max_pixels": 50176,
461
- },
462
- {"type": "text", "text": "Describe this image."},
463
- ],
464
- }
465
- ]
466
- ```
467
-
468
- ## Limitations
469
 
470
- While Qwen2-VL are applicable to a wide range of visual tasks, it is equally important to understand its limitations. Here are some known restrictions:
471
 
472
- 1. Lack of Audio Support: The current model does **not comprehend audio information** within videos.
473
- 2. Data timeliness: Our image dataset is **updated until June 2023**, and information subsequent to this date may not be covered.
474
- 3. Constraints in Individuals and Intellectual Property (IP): The model's capacity to recognize specific individuals or IPs is limited, potentially failing to comprehensively cover all well-known personalities or brands.
475
- 4. Limited Capacity for Complex Instruction: When faced with intricate multi-step instructions, the model's understanding and execution capabilities require enhancement.
476
- 5. Insufficient Counting Accuracy: Particularly in complex scenes, the accuracy of object counting is not high, necessitating further improvements.
477
- 6. Weak Spatial Reasoning Skills: Especially in 3D spaces, the model's inference of object positional relationships is inadequate, making it difficult to precisely judge the relative positions of objects.
478
 
479
- These limitations serve as ongoing directions for model optimization and improvement, and we are committed to continually enhancing the model's performance and scope of application.
 
480
 
 
481
 
482
- ## Citation
483
 
484
- If you find our work helpful, feel free to give us a cite.
485
 
486
- ```
487
- @article{Qwen2VL,
488
- title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
489
- author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang},
490
- journal={arXiv preprint arXiv:2409.12191},
491
- year={2024}
492
- }
493
 
494
- @article{Qwen-VL,
495
- title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
496
- author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
497
- journal={arXiv preprint arXiv:2308.12966},
498
- year={2023}
499
- }
500
- ```
 
10
  - Qwen/Qwen2-VL-2B
11
  ---
12
 
13
+ <!-- header start -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  <p align="center">
15
+ <img src="https://huggingface.co/datasets/FriendliAI/documentation-images/resolve/main/model-card-assets/friendliai.png" width="100%" alt="FriendliAI Logo">
16
+ </p>
17
+ <!-- header end -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
 
19
 
20
+ # Qwen/Qwen2-VL-2B-Instruct
 
 
 
 
 
21
 
22
+ * Model creator: [Qwen](https://huggingface.co/Qwen)
23
+ * Original model: [Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)
24
 
25
+ ## Differences
26
 
27
+ * Added missing `<|image_pad|>` and `<|video_pad|>` tokens to tokenizer.json
28
 
29
+ ## License
30
 
31
+ Refer to the license of the original model card.
 
 
 
 
 
 
32
 
 
 
 
 
 
 
 
tokenizer.json CHANGED
@@ -110,6 +110,23 @@
110
  "rstrip": false,
111
  "normalized": false,
112
  "special": true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  }
114
  ],
115
  "normalizer": {
 
110
  "rstrip": false,
111
  "normalized": false,
112
  "special": true
113
+ }, {
114
+ "id": 151655,
115
+ "content": "<|image_pad|>",
116
+ "single_word": false,
117
+ "lstrip": false,
118
+ "rstrip": false,
119
+ "normalized": false,
120
+ "special": true
121
+ },
122
+ {
123
+ "id": 151656,
124
+ "content": "<|video_pad|>",
125
+ "single_word": false,
126
+ "lstrip": false,
127
+ "rstrip": false,
128
+ "normalized": false,
129
+ "special": true
130
  }
131
  ],
132
  "normalizer": {