--- license: mit language: - en - de - fr - it - pt - hi - es - th base_model: - GSAI-ML/LLaDA-8B-Instruct pipeline_tag: text-generation tags: - gptqmodel - FunAGI - llada - int4 --- This model has been 4-bit quantized Llada-8B-Base model with [GPTQModel](https://github.com/ModelCloud/GPTQModel). - **bits**: 4 - **dynamic**: null - **group_size**: 128 - **desc_act**: true - **static_groups**: false - **sym**: false - **lm_head**: false - **true_sequential**: true - **quant_method**: "gptq" - **checkpoint_format**: "gptq" - **meta**: - **quantizer**: gptqmodel:1.1.0 - **uri**: https://github.com/modelcloud/gptqmodel - **damp_percent**: 0.1 - **damp_auto_increment**: 0.0015 ## Example: ```python # Copyright 2024-2025 ModelCloud.ai # Copyright 2024-2025 qubitium@modelcloud.ai # Contact: qubitium@modelcloud.ai, x.com/qubitium # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from datasets import load_dataset from gptqmodel import GPTQModel, QuantizeConfig, BACKEND from gptqmodel.models.base import BaseGPTQModel from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel from gptqmodel.models.auto import MODEL_MAP import torch.nn.functional as F import numpy as np pretrained_model_id = '/home/chentianqi/model/GSAI-ML/LLaDA-8B-Instruct' # "TinyLlama/TinyLlama-1.1B-Chat-v1.0" quantized_model_id = "FunAGI/LLaDA-8B-Instruct-gptqmodel-4bit" class LladaGPTQ(BaseGPTQModel): # Non-repeating layers at the root level: same level as `layers_node` # Excluding `layers_node`. base_modules = ["model.transformer.wte", "model.transformer.ln_f"] pre_lm_head_norm_module = "model.transformer.ln_f" lm_head = "model.transformer.ff_out" # Below describes all the repeating layers in this transformer model # `model.layers` is a node/module that hold all the repeating layers. The parent node for all n-layers. layers_node = "model.transformer.blocks" # Each repeating layer in `model.layers` is of type `LlamaDecoderLayer` layer_type = "LLaDALlamaBlock" # Inside each `LlamaDecoderLayer` layer are many internal modules # List them in the order executed in model forward() code # Many models have same execution order of: attention (q_k_v) projection, attention (output) projection, mlp (n) projections layer_modules = [ ["attn_out", "k_proj", "v_proj", "q_proj"], ["ff_proj", "up_proj"], ["ff_out"], ] MODEL_MAP ["llada"] = LladaGPTQ # os.makedirs(quantized_model_dir, exist_ok=True) def get_wikitext2(tokenizer, nsamples, seqlen): traindata = load_dataset("wikitext", "wikitext-2-raw-v1", split="train").filter( lambda x: len(x["text"]) >= seqlen) return [tokenizer(example["text"]) for example in traindata.select(range(nsamples))] @torch.no_grad() def calculate_avg_ppl(model, tokenizer): from gptqmodel.utils import Perplexity ppl = Perplexity( model=model, tokenizer=tokenizer, dataset_path="wikitext", dataset_name="wikitext-2-raw-v1", split="train", text_column="text", ) all = ppl.calculate(n_ctx=512, n_batch=512) # average ppl avg = sum(all) / len(all) return avg dynamic = { } def add_gumbel_noise(logits, temperature): ''' The Gumbel max is a method for sampling categorical distributions. According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality. Thus, we use float64. ''' logits = logits.to(torch.float64) noise = torch.rand_like(logits, dtype=torch.float64) gumbel_noise = (- torch.log(noise)) ** temperature return logits.exp() / gumbel_noise def get_num_transfer_tokens(mask_index, steps): ''' In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals. Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)), the expected number of tokens transitioned at each step should be consistent. This function is designed to precompute the number of tokens that need to be transitioned at each step. ''' mask_num = mask_index.sum(dim=1, keepdim=True) # base = mask_num // steps remainder = mask_num % steps num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base for i in range(mask_num.size(0)): num_transfer_tokens[i, :remainder[i]] += 1 return num_transfer_tokens def forward_process(batch, prompt_index, mask_id): b, l = batch.shape target_len = (l - prompt_index.sum()).item() k = torch.randint(1, target_len + 1, (), device=batch.device) x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long() x = ((x - 1) % target_len) + 1 assert x.min() >= 1 and x.max() <= target_len indices = torch.arange(target_len, device=batch.device).repeat(b, 1) is_mask = indices < x.unsqueeze(1) for i in range(b): is_mask[i] = is_mask[i][torch.randperm(target_len)] is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1) noisy_batch = torch.where(is_mask, mask_id, batch) # Return the masked batch and the mask ratio return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l) def get_logits(model, batch, prompt_index, cfg_scale, mask_id): if cfg_scale > 0.: assert len(prompt_index) == batch.shape[1] prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1) un_batch = batch.clone() un_batch[prompt_index] = mask_id batch = torch.cat([batch, un_batch]) input = batch logits = model(input).logits if cfg_scale > 0.: logits, un_logits = torch.chunk(logits, 2, dim=0) logits = un_logits + (cfg_scale + 1) * (logits - un_logits) return logits @ torch.no_grad() def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=32, cfg_scale=0., mask_id=126336): ''' Args: model: Mask predictor. prompt: A tensor of shape (l1). answer: A tensor of shape (l2). mc_num: Monte Carlo estimation times. As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128 Monte Carlo samples are adequate to produce stable results. batch_size: Mini batch size. cfg_scale: Unsupervised classifier-free guidance scale. mask_id: The toke id of [MASK] is 126336. ''' seq = torch.concatenate([prompt, answer])[None, :] seq = seq.repeat((batch_size, 1)).to(model.device) prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt) loss_ = [] for _ in range(mc_num // batch_size): perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id) mask_index = perturbed_seq == mask_id logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id) loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index] loss = loss.sum() / batch_size loss_.append(loss.item()) return - sum(loss_) / len(loss_) @ torch.no_grad() def generate(model, prompt, steps=128, gen_length=128, block_length=128, temperature=0., cfg_scale=0., remasking='low_confidence', mask_id=126336): ''' Args: model: Mask predictor. prompt: A tensor of shape (1, l). steps: Sampling steps, less than or equal to gen_length. gen_length: Generated answer length. block_length: Block length, less than or equal to gen_length. If less than gen_length, it means using semi_autoregressive remasking. temperature: Categorical distribution sampling temperature. cfg_scale: Unsupervised classifier-free guidance scale. remasking: Remasking strategy. 'low_confidence' or 'random'. mask_id: The toke id of [MASK] is 126336. ''' x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device) x[:, :prompt.shape[1]] = prompt.clone() prompt_index = (x != mask_id) assert gen_length % block_length == 0 num_blocks = gen_length // block_length assert steps % num_blocks == 0 steps = steps // num_blocks for num_block in range(num_blocks): block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id) num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps) for i in range(steps): mask_index = (x == mask_id) if cfg_scale > 0.: un_x = x.clone() un_x[prompt_index] = mask_id x_ = torch.cat([x, un_x], dim=0) logits = model(x_).logits logits, un_logits = torch.chunk(logits, 2, dim=0) logits = un_logits + (cfg_scale + 1) * (logits - un_logits) else: logits = model(x).logits logits_with_noise = add_gumbel_noise(logits, temperature=temperature) x0 = torch.argmax(logits_with_noise, dim=-1) # b, l if remasking == 'low_confidence': p = F.softmax(logits.to(torch.float64), dim=-1) x0_p = torch.squeeze( torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l elif remasking == 'random': x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device) else: raise NotImplementedError(remasking) x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf x0 = torch.where(mask_index, x0, x) confidence = torch.where(mask_index, x0_p, -np.inf) transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device) for j in range(confidence.shape[0]): _, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i]) transfer_index[j, select_index] = True x[transfer_index] = x0[transfer_index] return x def main(): tokenizer = AutoTokenizer.from_pretrained(pretrained_model_id, use_fast=False) traindataset = get_wikitext2(tokenizer, nsamples=128, seqlen=1024) quantize_config = QuantizeConfig( dynamic=dynamic, bits=8, # quantize model to 4-bit group_size=128, # it is recommended to set the value to 128, desc_act = True, sym=False ) device = "cuda:0" if torch.cuda.is_available() else "cpu" prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?" # # Add special tokens for the Instruct model. The Base model does not require the following two lines. m = [{"role": "user", "content": prompt}, ] prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False) input_ids = tokenizer(prompt)['input_ids'] input_ids = torch.tensor(input_ids).to(device).unsqueeze(0) device = "cuda:0" if torch.cuda.is_available() else "cpu" model = GPTQModel.load(quantized_model_id, device=device , trust_remote_code=True ) steps=128 out = generate(model, input_ids, steps=steps , gen_length=128, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence') print("*"*30+ f"GPTQ-4bit Steps {steps}"+ "*"*30) print(input_ids.shape) print( tokenizer.batch_decode(out[:, input_ids.shape[1]:], skip_special_tokens=True)[0]) del model model =AutoModel.from_pretrained(pretrained_model_id, trust_remote_code=True ).cuda() out = generate(model, input_ids, steps=steps , gen_length=128, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence') print("*"*30+ f"FP16 Steps {steps}"+ "*"*30) print(input_ids.shape) print( tokenizer.batch_decode(out[:, input_ids.shape[1]:], skip_special_tokens=True)[0]) if __name__ == "__main__": import logging logging.basicConfig( format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S", ) main() ```