File size: 1,585 Bytes
72cfab5 8b99a1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
datasets:
- yaful/MAGE
language:
- en
base_model:
- answerdotai/ModernBERT-base
pipeline_tag: text-classification
---
# Machine-generated text detection prevents language model collapse
This model is part of the research presented in the paper [Machine-generated text detection prevents language model collapse](https://arxiv.org/abs/2502.15654), which proposes an approach to prevent model collapse based on importance sampling from a machine-generated text detector. The official implementation and training scripts are available in the GitHub repository: [GeorgeDrayson/model_collapse](https://github.com/GeorgeDrayson/model_collapse)
## Usage
To use the model for detecting machine-generated text:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("GeorgeDrayson/modernbert-mage")
model = AutoModelForSequenceClassification.from_pretrained("GeorgeDrayson/modernbert-mage")
text = "Your input text here."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
print(f"Probability of machine-generated text: {probabilities[0][1].item():.4f}")
```
## Citation
If you use this model or find the research helpful, please cite:
```bibtex
@article{drayson2025machine,
title={Machine-generated text detection prevents language model collapse},
author={Drayson, George and Yilmaz, Emine and Lampos, Vasileios},
journal={arXiv preprint arXiv:2502.15654},
year={2025}
}
``` |