File size: 1,585 Bytes
72cfab5
 
 
 
 
 
 
 
 
8b99a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: apache-2.0
datasets:
- yaful/MAGE
language:
- en
base_model:
- answerdotai/ModernBERT-base
pipeline_tag: text-classification
---

# Machine-generated text detection prevents language model collapse

This model is part of the research presented in the paper [Machine-generated text detection prevents language model collapse](https://arxiv.org/abs/2502.15654), which proposes an approach to prevent model collapse based on importance sampling from a machine-generated text detector. The official implementation and training scripts are available in the GitHub repository: [GeorgeDrayson/model_collapse](https://github.com/GeorgeDrayson/model_collapse)

## Usage

To use the model for detecting machine-generated text:


```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("GeorgeDrayson/modernbert-mage")
model = AutoModelForSequenceClassification.from_pretrained("GeorgeDrayson/modernbert-mage")

text = "Your input text here."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
print(f"Probability of machine-generated text: {probabilities[0][1].item():.4f}")
```

## Citation

If you use this model or find the research helpful, please cite:


```bibtex
@article{drayson2025machine,
  title={Machine-generated text detection prevents language model collapse},
  author={Drayson, George and Yilmaz, Emine and Lampos, Vasileios},
  journal={arXiv preprint arXiv:2502.15654},
  year={2025}
}
```