Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
---
|
6 |
+
license: apache-2.0
|
7 |
+
---
|
8 |
+
|
9 |
+
# QwQ-Math-7B-Persona
|
10 |
+
|
11 |
+
## Introduction
|
12 |
+
|
13 |
+
QwQ-Math-7B-Persona is finetuned from Qwen2.5-Math-7B-Instruct on 1 million math persona data (see [this paper](https://arxiv.org/abs/2406.20094) for details about how to construct the data).
|
14 |
+
|
15 |
+
Currently QwQ-Math-7B-Persona is meant to serve as a draft model for losslessly accelerating the inference of QwQ-32B, but you may also use it as a standalone model.
|
16 |
+
|
17 |
+
## Quickstart
|
18 |
+
|
19 |
+
Here is a code snippet for using QwQ-Math-7B-Persona to accelerate the inference of QwQ 32B:
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
+
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
"Qwen/QwQ-32B-Preview",
|
26 |
+
torch_dtype="auto",
|
27 |
+
device_map={'': 0}
|
28 |
+
)
|
29 |
+
|
30 |
+
draft_model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
"Geralt-Targaryen/QwQ-Math-7B-Persona",
|
32 |
+
torch_dtype="auto",
|
33 |
+
device_map={'': 0}
|
34 |
+
)
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/QwQ-32B-Preview")
|
37 |
+
|
38 |
+
prompt = "How many r in strawberry."
|
39 |
+
messages = [
|
40 |
+
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
|
41 |
+
{"role": "user", "content": prompt}
|
42 |
+
]
|
43 |
+
text = tokenizer.apply_chat_template(
|
44 |
+
messages,
|
45 |
+
tokenize=False,
|
46 |
+
add_generation_prompt=True
|
47 |
+
)
|
48 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
49 |
+
|
50 |
+
generated_ids = model.generate(
|
51 |
+
**model_inputs,
|
52 |
+
max_new_tokens=512,
|
53 |
+
assistant_model=draft_model
|
54 |
+
)
|
55 |
+
generated_ids = [
|
56 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
57 |
+
]
|
58 |
+
|
59 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
60 |
+
```
|
61 |
+
|
62 |
+
For the more advanced SVIP draft length policy, please refer to [this GitHub repo](https://github.com/Geralt-Targaryen/SVIP).
|
63 |
+
|
64 |
+
## Citation
|
65 |
+
|
66 |
+
If you find QwQ-Math-1.5B-Persona to be helpful, please cite the following paper.
|
67 |
+
|
68 |
+
```
|
69 |
+
@misc{zhang2024svip,
|
70 |
+
title={Draft Model Knows When to Stop: A Self-Verification Length Policy for Speculative Decoding},
|
71 |
+
author={Ziyin Zhang and Jiahao Xu and Tian Liang and Xingyu Chen and Zhiwei He and Rui Wang and Zhaopeng Tu},
|
72 |
+
year={2024},
|
73 |
+
eprint={2411.18462},
|
74 |
+
archivePrefix={arXiv},
|
75 |
+
primaryClass={cs.CL},
|
76 |
+
url={https://arxiv.org/abs/2411.18462},
|
77 |
+
}
|
78 |
+
```
|