|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, QuantoConfig, GenerationConfig |
|
|
|
|
|
hf_config = AutoConfig.from_pretrained("/Users/gokdenizgulmez/Desktop/mlx-lm/mlx_lm/MiniMiniMax01Text", trust_remote_code=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01") |
|
prompt = "Hello!" |
|
messages = [ |
|
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by MiniMax based on MiniMax-Text-01 model."}]}, |
|
{"role": "user", "content": [{"type": "text", "text": prompt}]}, |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
model_inputs = tokenizer(text, return_tensors="pt") |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"/Users/gokdenizgulmez/Desktop/mlx-lm/mlx_lm/MiniMiniMax01Text", |
|
trust_remote_code=True |
|
) |
|
|
|
generation_config = GenerationConfig( |
|
max_new_tokens=20, |
|
eos_token_id=200020, |
|
use_cache=True, |
|
) |
|
generated_ids = model.generate(**model_inputs, generation_config=generation_config) |
|
print(f"generated_ids: {generated_ids}") |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |