End of training
Browse files- README.md +52 -45
- generation_config.json +1 -1
README.md
CHANGED
@@ -1,78 +1,85 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
|
|
|
|
3 |
license: apache-2.0
|
4 |
-
base_model:
|
5 |
tags:
|
6 |
-
- automatic-speech-recognition
|
7 |
-
- ASR
|
8 |
-
- Urdu
|
9 |
-
- Whisper
|
10 |
-
- speech-to-text
|
11 |
- generated_from_trainer
|
12 |
datasets:
|
13 |
-
-
|
14 |
metrics:
|
15 |
- wer
|
16 |
-
inference: true
|
17 |
-
widget:
|
18 |
-
- example_title: "Test Urdu Audio"
|
19 |
-
src: "https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/test.flac"
|
20 |
model-index:
|
21 |
-
- name:
|
22 |
results:
|
23 |
- task:
|
24 |
name: Automatic Speech Recognition
|
25 |
type: automatic-speech-recognition
|
26 |
dataset:
|
27 |
-
name:
|
28 |
-
type:
|
29 |
config: ur
|
30 |
split: test
|
31 |
-
args: ur
|
32 |
metrics:
|
33 |
- name: Wer
|
34 |
type: wer
|
35 |
-
value:
|
36 |
---
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
-
|
43 |
-
|
44 |
-
-
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
- The model is based on **OpenAI's Whisper-Medium**.
|
50 |
-
- It is fine-tuned specifically for **Urdu speech transcription**.
|
51 |
-
- Works best on **clear audio recordings** with minimal background noise.
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
### โ
**Intended Uses**
|
57 |
-
- **Transcribing Urdu speech** into text.
|
58 |
-
- **Generating subtitles** for Urdu videos.
|
59 |
-
- **Building Urdu speech-to-text applications**.
|
60 |
|
61 |
-
|
62 |
-
- May struggle with **noisy environments**.
|
63 |
-
- May not perform well on **regional Urdu dialects**.
|
64 |
-
- Limited **code-mixing** support (Urdu + English).
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
```python
|
72 |
-
from transformers import pipeline
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
language:
|
4 |
+
- ur
|
5 |
license: apache-2.0
|
6 |
+
base_model: openai/whisper-medium
|
7 |
tags:
|
|
|
|
|
|
|
|
|
|
|
8 |
- generated_from_trainer
|
9 |
datasets:
|
10 |
+
- fsicoli/common_voice_19_0
|
11 |
metrics:
|
12 |
- wer
|
|
|
|
|
|
|
|
|
13 |
model-index:
|
14 |
+
- name: Whisper Medium Ur - Your Name
|
15 |
results:
|
16 |
- task:
|
17 |
name: Automatic Speech Recognition
|
18 |
type: automatic-speech-recognition
|
19 |
dataset:
|
20 |
+
name: Common Voice 19.0
|
21 |
+
type: fsicoli/common_voice_19_0
|
22 |
config: ur
|
23 |
split: test
|
24 |
+
args: 'config: ur, split: test'
|
25 |
metrics:
|
26 |
- name: Wer
|
27 |
type: wer
|
28 |
+
value: 27.349454082657914
|
29 |
---
|
30 |
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
|
34 |
+
# Whisper Medium Ur - Your Name
|
35 |
|
36 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 19.0 dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.3613
|
39 |
+
- Wer: 27.3495
|
40 |
|
41 |
+
## Model description
|
42 |
|
43 |
+
More information needed
|
|
|
|
|
|
|
44 |
|
45 |
+
## Intended uses & limitations
|
46 |
|
47 |
+
More information needed
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
## Training and evaluation data
|
|
|
|
|
|
|
50 |
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5e-06
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 42
|
62 |
+
- gradient_accumulation_steps: 2
|
63 |
+
- total_train_batch_size: 16
|
64 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- lr_scheduler_warmup_steps: 40
|
67 |
+
- training_steps: 800
|
68 |
+
- mixed_precision_training: Native AMP
|
69 |
+
|
70 |
+
### Training results
|
71 |
|
72 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
73 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
74 |
+
| 0.5093 | 0.2623 | 200 | 0.4290 | 29.3009 |
|
75 |
+
| 0.4283 | 0.5246 | 400 | 0.3918 | 29.4996 |
|
76 |
+
| 0.4435 | 0.7869 | 600 | 0.3705 | 27.1239 |
|
77 |
+
| 0.2939 | 1.0485 | 800 | 0.3613 | 27.3495 |
|
78 |
|
|
|
|
|
79 |
|
80 |
+
### Framework versions
|
81 |
|
82 |
+
- Transformers 4.49.0
|
83 |
+
- Pytorch 2.5.1+cu121
|
84 |
+
- Datasets 3.4.0
|
85 |
+
- Tokenizers 0.21.0
|
generation_config.json
CHANGED
@@ -246,5 +246,5 @@
|
|
246 |
"transcribe": 50359,
|
247 |
"translate": 50358
|
248 |
},
|
249 |
-
"transformers_version": "4.
|
250 |
}
|
|
|
246 |
"transcribe": 50359,
|
247 |
"translate": 50358
|
248 |
},
|
249 |
+
"transformers_version": "4.49.0"
|
250 |
}
|