--- library_name: transformers language: - ur license: apache-2.0 base_model: GogetaBlueMUI/whisper-medium-ur-v3 tags: - generated_from_trainer datasets: - fsicoli/common_voice_19_0 metrics: - wer model-index: - name: Whisper Medium Ur - Your Name results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 19.0 type: fsicoli/common_voice_19_0 config: ur split: test args: 'config: ur, split: test' metrics: - name: Wer type: wer value: 25.0787058744725 --- # Whisper Medium Ur - Your Name This model is a fine-tuned version of [GogetaBlueMUI/whisper-medium-ur-v3](https://huggingface.co/GogetaBlueMUI/whisper-medium-ur-v3) on the Common Voice 19.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3692 - Wer: 25.0787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1648 | 0.3279 | 250 | 0.3832 | 28.1711 | | 0.1748 | 0.6557 | 500 | 0.3737 | 30.1650 | | 0.1887 | 0.9836 | 750 | 0.3587 | 24.8532 | | 0.132 | 1.3108 | 1000 | 0.3692 | 25.0787 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.4.1 - Tokenizers 0.21.0