File size: 2,972 Bytes
86a4938 83b8780 86a4938 83b8780 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
library_name: transformers
language:
- th
- ipa
license: apache-2.0
base_model: google/byt5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: thai-g2p-byt5-finetuned-final
results: []
datasets:
- Gregniuki/g2p_thai_ipa
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# thai-g2p-byt5-finetuned-final
This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0385
- Bleu: 91.9589
- Gen Len: 31.241
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu118
- Datasets 3.5.0
- Tokenizers 0.21.1
### How to use
from transformers import T5ForConditionalGeneration, ByT5Tokenizer
# --- Make sure this path points to the LATEST training output ---
# (The one corresponding to the metrics above)
model_path = r"C:\thai-g2p-v2\thai-g2p-byt5-finetuned" # Or whatever you named it
print(f"Loading model from: {model_path}")
tokenizer = ByT5Tokenizer.from_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)
# model.to("cuda") # If using GPU
def thai_to_ipa(text):
# ... (rest of your function is fine) ...
input_ids = tokenizer(text, return_tensors="pt").input_ids # .to(model.device)
# Increase max_length slightly just in case IPA is longer
outputs = model.generate(input_ids, max_length=192)
ipa_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
return ipa_output
# --- Test with examples NOT in your train/val data ---
test_word1 = "สวัสดี"
test_word2 = "ภาษาไทย"
test_word3 = "สำนักงานคณะกรรมการส่งเสริมและประสานงานเยาวชนแห่งชาติ"
test_word4 = "สมเด็จพระเจ้าพี่นางเธอ เจ้าฟ้ากัลยาณิวัฒนา กรมหลวงนราธิวาสราชนครินทร์"
print(f"'{test_word1}' -> {thai_to_ipa(test_word1)}")
print(f"'{test_word2}' -> {thai_to_ipa(test_word2)}")
print(f"'{test_word3}' -> {thai_to_ipa(test_word3)}")
print(f"'{test_word4}' -> {thai_to_ipa(test_word4)}") |