# from modeling_llavanext_for_embedding import LLaVANextForEmbedding # from transformers import LlavaNextProcessor # model = LLaVANextForEmbedding.from_pretrained("/share/junjie/code/VISTA2/240920mllmemb/llm_dense_retriever/MMRet-release/test").cuda() # processor = LlavaNextProcessor.from_pretrained("/share/junjie/code/VISTA2/240920mllmemb/llm_dense_retriever/MMRet-release/test") # texts = "find a image of a dog" # inputs = processor(texts, return_tensors="pt").to("cuda") # outputs = model(**inputs) # print(outputs) from transformers import LlavaNextProcessor, AutoModel model = AutoModel.from_pretrained("/share/junjie/code/VISTA2/240920mllmemb/llm_dense_retriever/MMRet-release/MMRet-MLLM", trust_remote_code=True).cuda() processor = LlavaNextProcessor.from_pretrained("/share/junjie/code/VISTA2/240920mllmemb/llm_dense_retriever/MMRet-release/MMRet-MLLM") texts = "find a image of a dog" inputs = processor(texts, return_tensors="pt").to("cuda") outputs = model(**inputs) print(outputs)