File size: 11,042 Bytes
86753ad e23e93c 53e514c 88e5897 1637e54 55fe2ca 1637e54 c516a59 1637e54 55fe2ca c516a59 1637e54 55fe2ca c516a59 1637e54 55fe2ca c516a59 1637e54 55fe2ca c516a59 1637e54 55fe2ca 88e5897 55fe2ca c516a59 88e5897 55fe2ca c516a59 88e5897 c516a59 b47cb9c 88e5897 b47cb9c 88e5897 b47cb9c 88e5897 b47cb9c 1637e54 88e5897 1637e54 88e5897 1637e54 53e514c 86753ad fc1d5ff e15742f fc1d5ff e15742f 15315f0 e15742f 86753ad 0f5ed11 4179e39 86753ad e15742f 86753ad e15742f 86753ad 55fe2ca 86753ad bf021d8 42aedd0 1637e54 55fe2ca 1637e54 b47cb9c 86753ad 55fe2ca 86753ad 55fe2ca 86753ad 55fe2ca 86753ad 55fe2ca 86753ad 99a3423 86753ad b7d42ca e15742f b7d42ca e15742f e23e93c e15742f 86753ad ddf77ce b7d42ca ddf77ce b7d42ca ddf77ce b7d42ca 86753ad e15742f afa4ea3 9a97ead 6e6a6a3 86753ad e15742f 86753ad e23e93c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
---
license: apache-2.0
datasets:
- bigcode/the-stack
- bigcode/the-stack-v2
- bigcode/starcoderdata
- bigcode/commitpack
library_name: transformers
tags:
- code
model-index:
- name: Mellum-4b-base
results:
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python)
metrics:
- name: EM
type: exact_match
value: 0.2591
verified: false
- name: EM ≤ 8k
type: exact_match
value: 0.2797
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 2k)
metrics:
- name: EM
type: exact_match
value: 0.2820
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 4k)
metrics:
- name: EM
type: exact_match
value: 0.2795
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 8k)
metrics:
- name: EM
type: exact_match
value: 0.2777
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 12k)
metrics:
- name: EM
type: exact_match
value: 0.2453
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 16k)
metrics:
- name: EM
type: exact_match
value: 0.2110
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_java_v1.1
name: RepoBench 1.1 (Java)
metrics:
- name: EM
type: exact_match
value: 0.2858
verified: false
- name: EM ≤ 8k
type: exact_match
value: 0.3108
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_java_v1.1
name: RepoBench 1.1 (Java, 2k)
metrics:
- name: EM
type: exact_match
value: 0.3202
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_java_v1.1
name: RepoBench 1.1 (Java, 4k)
metrics:
- name: EM
type: exact_match
value: 0.3212
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_java_v1.1
name: RepoBench 1.1 (Java, 8k)
metrics:
- name: EM
type: exact_match
value: 0.2910
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_java_v1.1
name: RepoBench 1.1 (Java, 12k)
metrics:
- name: EM
type: exact_match
value: 0.2492
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_java_v1.1
name: RepoBench 1.1 (Java, 16k)
metrics:
- name: EM
type: exact_match
value: 0.2474
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM
metrics:
- name: pass@1
type: pass@1
value: 0.3811
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM (Algorithmic)
metrics:
- name: pass@1
type: pass@1
value: 0.2530
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM (Control)
metrics:
- name: pass@1
type: pass@1
value: 0.3839
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM (API)
metrics:
- name: pass@1
type: pass@1
value: 0.5065
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval Infilling (Single-Line)
metrics:
- name: pass@1
type: pass@1
value: 0.6621
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval Infilling (Multi-Line)
metrics:
- name: pass@1
type: pass@1
value: 0.3852
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval Infilling (Random Span)
metrics:
- name: pass@1
type: pass@1
value: 0.2969
verified: false
---
# Model Description
Mellum-4b-base is JetBrains' first open-source large language model (LLM) optimized for code-related tasks.
Trained on over 4 trillion tokens with a context window of 8192 tokens across multiple programming languages, Mellum-4b-base is tailored specifically for code completion.
The model follows a LLaMA-style architecture with 4 billion parameters, making it efficient for both cloud inference (e.g., via vLLM) and local deployment (e.g., using llama.cpp or Ollama).
Mellum was trained using Automatic Mixed Precision (AMP) with bf16 precision.
The uploaded version on Hugging Face retains the bf16 format for public use.
Designed for integration into professional developer tooling (e.g., intelligent code suggestions in IDEs), AI-powered coding assistants, and research on code understanding and generation, Mellum is also well-suited for educational applications and fine-tuning experiments.
This release includes a base model, and Python SFT models as well.
Models for other languages will be released soon.
Keep in mind that base model is not fine-tuned for downstream tasks out-of-the-box, however, it is fully capable of supporting supervised fine-tuning (SFT) and reinforcement learning (RL) for adaptation to specific applications.
# Training Data
- Total Training Tokens: ~4.2 trillion tokens
- Corpus: The Stack, StarCoder Training Dataset, The Stack v2, CommitPack, English Wikipedia
# Training Details
- Context Window: 8,192 tokens
- Optimization: Standard language modeling objective.
- Hardware: Cluster of 256 x H200 NVIDIA GPUs with Infiniband
- Training Duration: ~20 days
# Benchmarks
In addition to the base model scores, we are providing scores for a Mellum fine-tuned for Python to provide model’s users with some estimation about potential capabilities.
## RepoBench 1.1
- Type: single-line
- Languages: Python and Java
- Metric: Exact Match (EM), %
Since Mellum has a maximum context window of 8k, we report here both the average performance across all evaluated context lengths (2k, 4k, 8k, 12k, and 16k) and the average over context lengths within its supported range (≤ 8k).
### Python Subset
| Model | 2k | 4k | 8k | 12k | 16k | Avg | Avg ≤ 8k |
|----------------------|--------|--------|--------|--------|--------|--------|----------|
| Mellum-4b-sft-python | 29.24% | 30.60% | 29.77% | 26.80% | 25.43% | 28.37% | 29.87% |
| Mellum-4b-base | 28.20% | 27.95% | 27.77% | 24.53% | 21.10% | 25.91% | 27.97% |
### Java Subset
| Model | 2k | 4k | 8k | 12k | 16k | Avg | Avg ≤ 8k |
|----------------|--------|--------|--------|--------|--------|--------|----------|
| Mellum-4b-base | 32.02% | 32.12% | 29.10% | 24.92% | 24.74% | 28.58% | 31.08% |
## Syntax-Aware Fill-in-the-Middle (SAFIM)
- Type: mix of multi-line and single-line
- Languages: multi-language
- Metric: pass@1, %
| Model | Algorithmic | Control | API | Average |
|----------------------|-------------|---------|--------|---------|
| Mellum-4b-sft-python | 33.16% | 36.11% | 57.10% | 42.12% |
| Mellum-4b-base | 25.30% | 38.39% | 50.65% | 38.11% |
## HumanEval Infilling
- Type: single-line and multi-line
- Languages: Python
- Metric: pass@1, %
| Model | Single-Line | Multi-Line | Random Span |
|----------------------|-------------|------------|-------------|
| Mellum-4b-sft-python | 80.45% | 48.19% | 37.68% |
| Mellum-4b-base | 66.21% | 38.52% | 29.70% |
We continue to work on model improvements and will share the next iteration soon.
# Limitations
- Biases: May reflect biases present in public codebases. For example it will likely produce code which is similar in style to the open-source repositories.
- Security: Code suggestions should not be assumed to be secure or free of vulnerabilities.
# Sample Usage
Here are examples of how to run and sample from the model.
## Generic generaion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
example = """
import sys
import os
import time
sys.path.append(os.getcwd())
from cluster.prepare_data import get_headers_pairs_list, write_dist_matrix
from cluster.token_edit_distance import get_distance_matrix
if len(sys.argv) < 3:
print(
"Too few arguments. You should provide: \n1. dataset_filename" +
"\n2. output_data_filename"
)
sys.exit()
start = time.perf_counter()
dataset_filename_ = sys.argv[1]
output_data_filename_ = sys.argv[2]
headers_pairs = get_headers_pairs_list(dataset_filename_, verbose=True)
dist_matrix, max_dist = get_distance_matrix(
list(map(lambda x: x[1], headers_pairs)),
verbose=True
)
write_dist_matrix(dist_matrix, max_dist, output_data_filename_, verbose=True)
end = time.perf_counter()
"""
tokenizer = AutoTokenizer.from_pretrained('JetBrains/Mellum-4b-base')
model = AutoModelForCausalLM.from_pretrained('JetBrains/Mellum-4b-base')
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False)
input_len = len(encoded_input["input_ids"][0])
out = model.generate(
**encoded_input,
max_new_tokens=100,
)
print("### Context")
print(tokenizer.decode(out[0][:input_len]))
print("### Prediction")
print(tokenizer.decode(out[0][input_len:]))
```
## Fill in the middle with additional files as context generation
```python
example = """<filename>utils.py
def multiply(x, y):
return x * y
<filename>config.py
DEBUG = True
MAX_VALUE = 100
<filename>example.py
<fim_suffix>
# Test the function
result = calculate_sum(5, 10)
print(result)<fim_prefix>def calculate_sum(a, b):
<fim_middle>"""
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False)
out = model.generate(
**encoded_input,
max_new_tokens=100,
)
```
# Citation
If you use this model, please cite:
```bibtex
@misc{Mellum-4b-base,
title = {Mellum-4b-base},
author = {Pavlichenko, Nikita and Nazarov, Iurii and Dolgov, Ivan and Garanina, Ekaterina and Lasocki, Karol and Reshetnikova, Julia and Boitsov, Sergei and Bondyrev, Ivan and Karaeva, Dariia and Sheptyakov, Maksim and Ustalov, Dmitry and Abramov, Nikita and Kolomyttseva, Olga and Lysaniuk, Kseniia and Zavidnyi, Ilia and Semenkin, Anton and Tankov, Vladislav and Sazanovich, Uladzislau},
year = {2025},
}
```
# Contact
For questions, collaborations and requests reach us out via [email protected] |