File size: 11,042 Bytes
86753ad
 
e23e93c
 
 
 
 
 
53e514c
 
 
 
 
88e5897
 
 
 
 
 
 
 
 
 
 
 
 
 
1637e54
 
 
 
55fe2ca
1637e54
c516a59
 
1637e54
 
55fe2ca
 
 
 
 
 
c516a59
 
1637e54
 
55fe2ca
 
 
 
 
 
c516a59
 
1637e54
 
55fe2ca
 
 
 
 
 
c516a59
 
1637e54
 
55fe2ca
 
 
 
 
 
c516a59
 
1637e54
 
55fe2ca
 
 
88e5897
 
55fe2ca
c516a59
 
88e5897
55fe2ca
c516a59
 
88e5897
c516a59
b47cb9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88e5897
 
b47cb9c
88e5897
 
 
b47cb9c
88e5897
 
 
 
 
 
 
 
 
b47cb9c
1637e54
 
 
 
88e5897
1637e54
 
 
88e5897
 
 
 
 
 
 
 
 
 
 
1637e54
53e514c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86753ad
 
 
fc1d5ff
e15742f
fc1d5ff
 
e15742f
 
 
 
 
 
15315f0
 
e15742f
86753ad
 
0f5ed11
4179e39
86753ad
 
 
e15742f
86753ad
 
 
 
e15742f
86753ad
55fe2ca
86753ad
 
 
 
bf021d8
42aedd0
1637e54
55fe2ca
 
 
 
1637e54
 
b47cb9c
 
 
86753ad
55fe2ca
86753ad
 
 
 
 
 
55fe2ca
 
86753ad
 
 
 
 
 
55fe2ca
86753ad
55fe2ca
 
86753ad
99a3423
 
86753ad
 
 
 
 
b7d42ca
e15742f
b7d42ca
e15742f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23e93c
 
e15742f
 
 
 
 
 
 
 
 
 
 
86753ad
ddf77ce
b7d42ca
ddf77ce
 
 
 
 
 
 
 
 
 
 
 
 
b7d42ca
ddf77ce
b7d42ca
 
 
 
 
 
86753ad
 
e15742f
 
afa4ea3
 
9a97ead
6e6a6a3
86753ad
e15742f
86753ad
 
e23e93c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
---
license: apache-2.0
datasets:
- bigcode/the-stack
- bigcode/the-stack-v2
- bigcode/starcoderdata
- bigcode/commitpack
library_name: transformers
tags:
- code
model-index:
- name: Mellum-4b-base
  results:
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_python_v1.1
      name: RepoBench 1.1 (Python)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2591
      verified: false
    - name: EM  8k
      type: exact_match
      value: 0.2797
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_python_v1.1
      name: RepoBench 1.1 (Python, 2k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2820
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_python_v1.1
      name: RepoBench 1.1 (Python, 4k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2795
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_python_v1.1
      name: RepoBench 1.1 (Python, 8k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2777
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_python_v1.1
      name: RepoBench 1.1 (Python, 12k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2453
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_python_v1.1
      name: RepoBench 1.1 (Python, 16k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2110
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_java_v1.1
      name: RepoBench 1.1 (Java)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2858
      verified: false
    - name: EM  8k
      type: exact_match
      value: 0.3108
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_java_v1.1
      name: RepoBench 1.1 (Java, 2k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.3202
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_java_v1.1
      name: RepoBench 1.1 (Java, 4k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.3212
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_java_v1.1
      name: RepoBench 1.1 (Java, 8k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2910
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_java_v1.1
      name: RepoBench 1.1 (Java, 12k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2492
      verified: false
  - task:
      type: text-generation
    dataset:
      type: tianyang/repobench_java_v1.1
      name: RepoBench 1.1 (Java, 16k)
    metrics:
    - name: EM
      type: exact_match
      value: 0.2474
      verified: false
  - task:
      type: text-generation
    dataset:
      type: gonglinyuan/safim
      name: SAFIM
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.3811
      verified: false
  - task:
      type: text-generation
    dataset:
      type: gonglinyuan/safim
      name: SAFIM (Algorithmic)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2530
      verified: false
  - task:
      type: text-generation
    dataset:
      type: gonglinyuan/safim
      name: SAFIM (Control)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.3839
      verified: false
  - task:
      type: text-generation
    dataset:
      type: gonglinyuan/safim
      name: SAFIM (API)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.5065
      verified: false
  - task:
      type: text-generation
    dataset:
      type: loubnabnl/humaneval_infilling
      name: HumanEval Infilling (Single-Line)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.6621
      verified: false
  - task:
      type: text-generation
    dataset:
      type: loubnabnl/humaneval_infilling
      name: HumanEval Infilling (Multi-Line)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.3852
      verified: false
  - task:
      type: text-generation
    dataset:
      type: loubnabnl/humaneval_infilling
      name: HumanEval Infilling (Random Span)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2969
      verified: false
---

# Model Description
Mellum-4b-base is JetBrains' first open-source large language model (LLM) optimized for code-related tasks.

Trained on over 4 trillion tokens with a context window of 8192 tokens across multiple programming languages, Mellum-4b-base is tailored specifically for code completion. 
The model follows a LLaMA-style architecture with 4 billion parameters, making it efficient for both cloud inference (e.g., via vLLM) and local deployment (e.g., using llama.cpp or Ollama).

Mellum was trained using Automatic Mixed Precision (AMP) with bf16 precision. 
The uploaded version on Hugging Face retains the bf16 format for public use.

Designed for integration into professional developer tooling (e.g., intelligent code suggestions in IDEs), AI-powered coding assistants, and research on code understanding and generation, Mellum is also well-suited for educational applications and fine-tuning experiments.

This release includes a base model, and Python SFT models as well. 
Models for other languages will be released soon.
Keep in mind that base model is not fine-tuned for downstream tasks out-of-the-box, however, it is fully capable of supporting supervised fine-tuning (SFT) and reinforcement learning (RL) for adaptation to specific applications.

# Training Data
- Total Training Tokens: ~4.2 trillion tokens
- Corpus: The Stack, StarCoder Training Dataset, The Stack v2, CommitPack, English Wikipedia

# Training Details
- Context Window: 8,192 tokens
- Optimization: Standard language modeling objective.
- Hardware: Cluster of 256 x H200 NVIDIA GPUs with Infiniband
- Training Duration: ~20 days

# Benchmarks
In addition to the base model scores, we are providing scores for a Mellum fine-tuned for Python to provide model’s users with some estimation about potential capabilities.

## RepoBench 1.1
- Type: single-line
- Languages: Python and Java
- Metric: Exact Match (EM), %

Since Mellum has a maximum context window of 8k, we report here both the average performance across all evaluated context lengths (2k, 4k, 8k, 12k, and 16k) and the average over context lengths within its supported range (≤ 8k).

### Python Subset
| Model                |   2k   |   4k   |   8k   |  12k   |  16k   |  Avg   | Avg ≤ 8k |
|----------------------|--------|--------|--------|--------|--------|--------|----------|
| Mellum-4b-sft-python | 29.24% | 30.60% | 29.77% | 26.80% | 25.43% | 28.37% |  29.87%  |
| Mellum-4b-base       | 28.20% | 27.95% | 27.77% | 24.53% | 21.10% | 25.91% |  27.97%  |

### Java Subset
| Model          |   2k   |   4k   |   8k   |  12k   |  16k   |  Avg   | Avg ≤ 8k |
|----------------|--------|--------|--------|--------|--------|--------|----------|
| Mellum-4b-base | 32.02% | 32.12% | 29.10% | 24.92% | 24.74% | 28.58% |  31.08%  |

## Syntax-Aware Fill-in-the-Middle (SAFIM)
- Type: mix of multi-line and single-line
- Languages: multi-language
- Metric: pass@1, %

| Model                | Algorithmic | Control | API    | Average |
|----------------------|-------------|---------|--------|---------|
| Mellum-4b-sft-python | 33.16%      | 36.11%  | 57.10% | 42.12%  |
| Mellum-4b-base       | 25.30%      | 38.39%  | 50.65% | 38.11%  |

## HumanEval Infilling
- Type: single-line and multi-line
- Languages: Python
- Metric: pass@1, %

| Model                | Single-Line | Multi-Line | Random Span |
|----------------------|-------------|------------|-------------|
| Mellum-4b-sft-python | 80.45%      | 48.19%     | 37.68%      |
| Mellum-4b-base       | 66.21%      | 38.52%     | 29.70%      |

We continue to work on model improvements and will share the next iteration soon.

# Limitations
- Biases: May reflect biases present in public codebases. For example it will likely produce code which is similar in style to the open-source repositories.
- Security: Code suggestions should not be assumed to be secure or free of vulnerabilities.

# Sample Usage
Here are examples of how to run and sample from the model.

## Generic generaion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

example = """
import sys
import os
import time

sys.path.append(os.getcwd())

from cluster.prepare_data import get_headers_pairs_list, write_dist_matrix
from cluster.token_edit_distance import get_distance_matrix

if len(sys.argv) < 3:
    print(
        "Too few arguments. You should provide: \n1. dataset_filename" +
        "\n2. output_data_filename"
    )
    sys.exit()

start = time.perf_counter()
dataset_filename_ = sys.argv[1]
output_data_filename_ = sys.argv[2]

headers_pairs = get_headers_pairs_list(dataset_filename_, verbose=True)

dist_matrix, max_dist = get_distance_matrix(
    list(map(lambda x: x[1], headers_pairs)),
    verbose=True
)

write_dist_matrix(dist_matrix, max_dist, output_data_filename_, verbose=True)

end = time.perf_counter()
"""

tokenizer = AutoTokenizer.from_pretrained('JetBrains/Mellum-4b-base')
model = AutoModelForCausalLM.from_pretrained('JetBrains/Mellum-4b-base')
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False)
input_len = len(encoded_input["input_ids"][0])
out = model.generate(
    **encoded_input,
    max_new_tokens=100,
)
print("### Context")
print(tokenizer.decode(out[0][:input_len]))
print("### Prediction")
print(tokenizer.decode(out[0][input_len:]))
```

## Fill in the middle with additional files as context generation
```python
example = """<filename>utils.py
def multiply(x, y):
    return x * y
<filename>config.py
DEBUG = True
MAX_VALUE = 100
<filename>example.py
<fim_suffix> 

# Test the function
result = calculate_sum(5, 10)
print(result)<fim_prefix>def calculate_sum(a, b):
<fim_middle>"""

encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False)
out = model.generate(
    **encoded_input,
    max_new_tokens=100,
)
```

# Citation
If you use this model, please cite:

```bibtex
@misc{Mellum-4b-base,
  title     = {Mellum-4b-base},
  author    = {Pavlichenko, Nikita and Nazarov, Iurii and Dolgov, Ivan and Garanina, Ekaterina and Lasocki, Karol and Reshetnikova, Julia and Boitsov, Sergei and Bondyrev, Ivan and Karaeva, Dariia and Sheptyakov, Maksim and Ustalov, Dmitry and Abramov, Nikita and Kolomyttseva, Olga and Lysaniuk, Kseniia and Zavidnyi, Ilia and Semenkin, Anton and Tankov, Vladislav and Sazanovich, Uladzislau},
  year      = {2025},
}
```

# Contact
For questions, collaborations and requests reach us out via [email protected]