File size: 7,033 Bytes
8003c40 a983232 b8c3555 8003c40 9756c2f 8003c40 3b8d629 8003c40 919a794 8003c40 919a794 8003c40 919a794 8003c40 919a794 8003c40 a90e3ac a4eec8e 34c447a 8003c40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
---
license: apache-2.0
datasets:
- bigcode/the-stack
- bigcode/the-stack-v2
- bigcode/starcoderdata
- bigcode/commitpack
library_name: transformers
tags:
- code
base_model:
- JetBrains/Mellum-4b-base
model-index:
- name: Mellum-4b-sft-python
results:
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python)
metrics:
- name: EM
type: exact_match
value: 0.2837
verified: false
- name: EM ≤ 8k
type: exact_match
value: 0.2987
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 2k)
metrics:
- name: EM
type: exact_match
value: 0.2924
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 4k)
metrics:
- name: EM
type: exact_match
value: 0.3060
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 8k)
metrics:
- name: EM
type: exact_match
value: 0.2977
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 12k)
metrics:
- name: EM
type: exact_match
value: 0.2680
verified: false
- task:
type: text-generation
dataset:
type: tianyang/repobench_python_v1.1
name: RepoBench 1.1 (Python, 16k)
metrics:
- name: EM
type: exact_match
value: 0.2543
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM
metrics:
- name: pass@1
type: pass@1
value: 0.4212
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM (Algorithmic)
metrics:
- name: pass@1
type: pass@1
value: 0.3316
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM (Control)
metrics:
- name: pass@1
type: pass@1
value: 0.3611
verified: false
- task:
type: text-generation
dataset:
type: gonglinyuan/safim
name: SAFIM (API)
metrics:
- name: pass@1
type: pass@1
value: 0.5710
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval Infilling (Single-Line)
metrics:
- name: pass@1
type: pass@1
value: 0.8045
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval Infilling (Multi-Line)
metrics:
- name: pass@1
type: pass@1
value: 0.4819
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval Infilling (Random Span)
metrics:
- name: pass@1
type: pass@1
value: 0.3768
verified: false
---
# Model Description
Mellum-4b-sft-python is a fine-tuned version of JetBrains' first open-source large language model (LLM) optimized for code-related tasks.
Pre-trained on over 4 trillion tokens with a context window of 8192 tokens across multiple programming languages, and then fine-tuned, Mellum-4b-sft-python is tailored specifically for code completion in Python.
The model follows a LLaMA-style architecture with 4 billion parameters, making it efficient for both cloud inference (e.g., via vLLM) and local deployment (e.g., using llama.cpp or Ollama).
Mellum was trained using Automatic Mixed Precision (AMP) with bf16 precision.
The uploaded version on Hugging Face retains the bf16 format for public use.
Designed for integration into professional developer tooling (e.g., intelligent code suggestions in IDEs), AI-powered coding assistants, and research on code understanding and generation, Mellum is also well-suited for educational applications and fine-tuning experiments.
# Limitations
- Biases: May reflect biases present in public codebases. For example it will likely produce code which is similar in style to the open-source repositories.
- Security: Code suggestions should not be assumed to be secure or free of vulnerabilities.
# Sample Usage
Here are examples of how to run and sample from the model.
## Generic generaion
```python
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
example = """
import sys
import os
import time
sys.path.append(os.getcwd())
from cluster.prepare_data import get_headers_pairs_list, write_dist_matrix
from cluster.token_edit_distance import get_distance_matrix
if len(sys.argv) < 3:
print(
"Too few arguments. You should provide: \n1. dataset_filename" +
"\n2. output_data_filename"
)
sys.exit()
start = time.perf_counter()
dataset_filename_ = sys.argv[1]
output_data_filename_ = sys.argv[2]
headers_pairs = get_headers_pairs_list(dataset_filename_, verbose=True)
dist_matrix, max_dist = get_distance_matrix(
list(map(lambda x: x[1], headers_pairs)),
verbose=True
)
write_dist_matrix(dist_matrix, max_dist, output_data_filename_, verbose=True)
end = time.perf_counter()
"""
tokenizer = AutoTokenizer.from_pretrained('JetBrains/Mellum-4b-sft-python')
model = AutoModelForCausalLM.from_pretrained('JetBrains/Mellum-4b-sft-python')
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False)
input_len = len(encoded_input["input_ids"][0])
out = model.generate(
**encoded_input,
max_new_tokens=100,
)
print("### Context")
print(tokenizer.decode(out[0][:input_len]))
print("### Prediction")
print(tokenizer.decode(out[0][input_len:]))
```
## Fill in the middle with additional files as context generation
```python
example = """<filename>utils.py
def multiply(x, y):
return x * y
<filename>config.py
DEBUG = True
MAX_VALUE = 100
<filename>example.py
<fim_suffix>
# Test the function
result = calculate_sum(5, 10)
print(result)<fim_prefix>def calculate_sum(a, b):
<fim_middle>"""
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False)
out = model.generate(
**encoded_input,
max_new_tokens=100,
)
```
# Citation
If you use this model, please cite:
```bibtex
@misc{Mellum-4b-base,
title = {Mellum-4b-base},
author = {Pavlichenko, Nikita and Nazarov, Iurii and Dolgov, Ivan and Garanina, Ekaterina and Lasocki, Karol and Reshetnikova, Julia and Boitsov, Sergei and Bondyrev, Ivan and Karaeva, Dariia and Sheptyakov, Maksim and Ustalov, Dmitry and Abramov, Nikita and Kolomyttseva, Olga and Lysaniuk, Kseniia and Zavidnyi, Ilia and Semenkin, Anton and Tankov, Vladislav and Sazanovich, Uladzislau},
year = {2025},
}
```
# Contact
For questions, collaborations and requests reach us out via [email protected] |