--- library_name: transformers license: mit base_model: microsoft/biogpt tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.08217270194986072 - name: Recall type: recall value: 0.07496823379923762 - name: F1 type: f1 value: 0.07840531561461794 - name: Accuracy type: accuracy value: 0.9369870473375083 --- # bert-finetuned-ner This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Precision: 0.0822 - Recall: 0.0750 - F1: 0.0784 - Accuracy: 0.9370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3388 | 1.0 | 679 | 0.2280 | 0.0292 | 0.0254 | 0.0272 | 0.9312 | | 0.2425 | 2.0 | 1358 | 0.2161 | 0.0612 | 0.0572 | 0.0591 | 0.9345 | | 0.1811 | 3.0 | 2037 | 0.2151 | 0.0822 | 0.0750 | 0.0784 | 0.9370 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.1.0+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1