--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M/blob/main/LICENSE language: - en - ko pipeline_tag: text-generation base_model: Qwen/Qwen2.5-14B-Instruct-1M tags: - chat library_name: transformers --- > Update @ 2025.03.14: The updated version, [T3Q-qwen2.5-14b-v1.2-e2](https://huggingface.co/JungZoona/T3Q-qwen2.5-14b-v1.2-e2) release > Update @ 2025.03.14: The updated version, [T3Q-qwen2.5-32b-v1.2-e2](https://huggingface.co/JungZoona/T3Q-qwen2.5-32b-v1.2-e2) release ## Model Summary T3Q-qwen2.5-14b-v1.0-e3 is a post-trained version of the Qwen/Qwen2.5-14B-Instruct-1M model. (LoRA-8-4-0.0001-cosine-32-16 with train_data_v1.0) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63e05d54a98d931aa90a7e18/wcNgrnOUeuLnNTgSFsDzg.png) ## Global Open LLM Leaderboard Performance This model achieved 1st place in performance among models under 32b in the [Global Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?params=0%2C32). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63e05d54a98d931aa90a7e18/8duj8OLlrVDqnMUDIO2WG.png)
Page Capture Page Capture
## Quick Start Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "JungZoona/T3Q-qwen2.5-14b-v1.0-e3" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ```