Update README.md
Browse files
README.md
CHANGED
@@ -38,7 +38,7 @@ Default settings were used for other training hyperparameters (find more informa
|
|
38 |
|
39 |
Model training was performed using the following code:
|
40 |
|
41 |
-
```
|
42 |
from ultralytics import YOLO
|
43 |
|
44 |
# Use pretrained Yolo segmentation model
|
@@ -55,7 +55,7 @@ model.train(data=yaml_path, name='model_name', epochs=100, imgsz=640, workers=4,
|
|
55 |
|
56 |
Evaluation results using the validation dataset are listed below:
|
57 |
|Class|Images|Class instances|Box precision|Box recall|Box mAP50|Box mAP50-95|Mask precision|Mask recall|Mask mAP50|Mask mAP50-95
|
58 |
-
|
59 |
Text line|574|43156|0.912|0.888|0.949|0.701|0.935|0.907|0.954|0.55
|
60 |
|
61 |
More information on the performance metrics can be found [here](https://docs.ultralytics.com/guides/yolo-performance-metrics/).
|
@@ -65,11 +65,11 @@ More information on the performance metrics can be found [here](https://docs.ult
|
|
65 |
If the model file `tuomiokirja_lines_05122023.pt` is downloaded to a folder `\models\tuomiokirja_lines_05122023.pt`
|
66 |
and the input image path is `\data\image.jpg', inference can be perfomed using the following code:
|
67 |
|
68 |
-
```
|
69 |
from ultralytics import YOLO
|
70 |
|
71 |
# Initialize model
|
72 |
-
model = YOLO(
|
73 |
-
prediction_results = model.predict(source
|
74 |
```
|
75 |
More information for available inference arguments can be found [here](https://docs.ultralytics.com/modes/predict/#inference-arguments).
|
|
|
38 |
|
39 |
Model training was performed using the following code:
|
40 |
|
41 |
+
```python
|
42 |
from ultralytics import YOLO
|
43 |
|
44 |
# Use pretrained Yolo segmentation model
|
|
|
55 |
|
56 |
Evaluation results using the validation dataset are listed below:
|
57 |
|Class|Images|Class instances|Box precision|Box recall|Box mAP50|Box mAP50-95|Mask precision|Mask recall|Mask mAP50|Mask mAP50-95
|
58 |
+
|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|
|
59 |
Text line|574|43156|0.912|0.888|0.949|0.701|0.935|0.907|0.954|0.55
|
60 |
|
61 |
More information on the performance metrics can be found [here](https://docs.ultralytics.com/guides/yolo-performance-metrics/).
|
|
|
65 |
If the model file `tuomiokirja_lines_05122023.pt` is downloaded to a folder `\models\tuomiokirja_lines_05122023.pt`
|
66 |
and the input image path is `\data\image.jpg', inference can be perfomed using the following code:
|
67 |
|
68 |
+
```python
|
69 |
from ultralytics import YOLO
|
70 |
|
71 |
# Initialize model
|
72 |
+
model = YOLO('\models\tuomiokirja_lines_05122023.pt')
|
73 |
+
prediction_results = model.predict(source='\data\image.jpg', save=True)
|
74 |
```
|
75 |
More information for available inference arguments can be found [here](https://docs.ultralytics.com/modes/predict/#inference-arguments).
|