--- base_model: openai/whisper-large-v3 datasets: - google/fleurs library_name: transformers license: apache-2.0 metrics: - wer model-index: - name: whisper-large-v3-Bengali-Version1 results: [] language: - bn pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-Bengali-Version1 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1519 - Wer: 44.5003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.2412 | 4.8193 | 2000 | 0.2103 | 56.7927 | | 0.208 | 9.6386 | 4000 | 0.1844 | 51.9640 | | 0.195 | 14.4578 | 6000 | 0.1719 | 49.3167 | | 0.194 | 19.2771 | 8000 | 0.1647 | 47.7358 | | 0.1762 | 24.0964 | 10000 | 0.1597 | 46.6144 | | 0.1763 | 28.9157 | 12000 | 0.1567 | 45.8361 | | 0.168 | 33.7349 | 14000 | 0.1544 | 45.1192 | | 0.1623 | 38.5542 | 16000 | 0.1530 | 44.8802 | | 0.1601 | 43.3735 | 18000 | 0.1521 | 44.7822 | | 0.1666 | 48.1928 | 20000 | 0.1519 | 44.5003 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1